13
0

Some improvements to run affinity clustering on larger dataset and

compute density.
This commit is contained in:
Nate E TeBlunthuis 2020-12-12 20:42:47 -08:00
parent e6294b5b90
commit 56269deee3
15 changed files with 84 additions and 84 deletions

4
clustering/Makefile Normal file
View File

@ -0,0 +1,4 @@
srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
affinity/subreddit_comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet
# $srun_cdsc python3
clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.feather affinity/subreddit_comment_authors_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85

View File

@ -1,12 +1,15 @@
#!/usr/bin/env python3
import pandas as pd
import numpy as np
from sklearn.cluster import AffinityPropagation
import fire
def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968):
def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
'''
similarities: feather file with a dataframe of similarity scores
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.
'''
df = pd.read_feather(similarities)
@ -16,6 +19,8 @@ def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, conv
preference = np.quantile(mat,preference_quantile)
print(f"preference is {preference}")
print("data loaded")
clustering = AffinityPropagation(damping=damping,
@ -24,6 +29,7 @@ def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, conv
copy=False,
preference=preference,
affinity='precomputed',
verbose=verbose,
random_state=random_state).fit(mat)

7
density/Makefile Normal file
View File

@ -0,0 +1,7 @@
all: /gscratch/comdata/output/reddit_density/comment_terms_10000.feather /gscratch/comdata/output/reddit_density/comment_authors_10000.feather
/gscratch/comdata/output/reddit_density/comment_terms_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
python3 overlap_density.py terms --inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather" --agg=pd.DataFrame.sum
/gscratch/comdata/output/reddit_density/comment_authors_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
python3 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather" --agg=pd.DataFrame.sum

View File

@ -0,0 +1,57 @@
import pandas as pd
from pandas.core.groupby import DataFrameGroupBy as GroupBy
import fire
import numpy as np
def overlap_density(inpath, outpath, agg = pd.DataFrame.sum):
df = pd.read_feather(inpath)
df = df.drop('subreddit',1)
np.fill_diagonal(df.values,0)
df = agg(df, 0).reset_index()
df = df.rename({0:'overlap_density'},axis='columns')
df.to_feather(outpath)
return df
def overlap_density_weekly(inpath, outpath, agg = GroupBy.sum):
df = pd.read_parquet(inpath)
# exclude the diagonal
df = df.loc[df.subreddit != df.variable]
res = agg(df.groupby(['subreddit','week'])).reset_index()
res.to_feather(outpath)
return res
def author_overlap_density(inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather",
outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather", agg=pd.DataFrame.sum):
if type(agg) == str:
agg = eval(agg)
overlap_density(inpath, outpath, agg)
def term_overlap_density(inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather",
outpath="/gscratch/comdata/output/reddit_density/comment_term_similarity_10000.feather", agg=pd.DataFrame.sum):
if type(agg) == str:
agg = eval(agg)
overlap_density(inpath, outpath, agg)
def author_overlap_density_weekly(inpath="/gscratch/comdata/output/reddit_similarity/subreddit_authors_10000_weekly.parquet",
outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000_weekly.feather", agg=GroupBy.sum):
if type(agg) == str:
agg = eval(agg)
overlap_density_weekly(inpath, outpath, agg)
def term_overlap_density_weekly(inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet",
outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000_weekly.parquet", agg=GroupBy.sum):
if type(agg) == str:
agg = eval(agg)
overlap_density_weekly(inpath, outpath, agg)
if __name__ == "__main__":
fire.Fire({'authors':author_overlap_density,
'terms':term_overlap_density,
'author_weekly':author_overlap_density_weekly,
'term_weekly':term_overlap_density_weekly})

View File

@ -1 +0,0 @@
nathante@n2347.hyak.local.31061:1602221800

View File

@ -1 +0,0 @@
nathante@n2347.hyak.local.31061:1602221800

View File

@ -1,73 +0,0 @@
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
import pandas as pd
import fire
from pathlib import Path
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(outfile)
print(exclude_phrases)
tfidf = spark.read.parquet(infile)
if included_subreddits is None:
included_subreddits = select_topN_subreddits(topN)
else:
included_subreddits = set(open(included_subreddits))
if exclude_phrases == True:
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
print("creating temporary parquet with matrix indicies")
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits)
tfidf = spark.read.parquet(tempdir.name)
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
print("loading matrix")
mat = read_tfidf_matrix(tempdir.name, term_colname)
print('computing similarities')
sims = column_similarities(mat)
del mat
sims = pd.DataFrame(sims.todense())
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
sims['subreddit'] = subreddit_names.subreddit.values
p = Path(outfile)
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
sims.to_feather(outfile)
tempdir.cleanup()
def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
'term',
outfile,
min_df,
included_subreddits,
topN,
exclude_phrases)
def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000):
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
'author',
outfile,
min_df,
included_subreddits,
topN,
exclude_phrases=False)
if __name__ == "__main__":
fire.Fire({'term':term_cosine_similarities,
'author':author_cosine_similarities})

View File

@ -1 +0,0 @@
nathante@n2347.hyak.local.31061:1602221800

View File

@ -1 +0,0 @@
nathante@n2347.hyak.local.31061:1602221800

View File

@ -1,2 +1,5 @@
/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.feather
/gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
start_spark_and_run.sh 1 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet

View File

@ -3,7 +3,7 @@ from pyspark.sql import SparkSession
import pandas as pd
import fire
from pathlib import Path
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits, column_similarities
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):

View File

@ -1,4 +1,4 @@
#!/usr/bin/bash
start_spark_cluster.sh
spark-submit --master spark://$(hostname):18899 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet
spark-submit --master spark://$(hostname):18899 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet
stop-all.sh

View File

@ -45,7 +45,7 @@ def tfidf_terms(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/commen
[]
)
def tfidf_authors_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
def tfidf_authors_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
topN=25000):
return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet",
@ -55,7 +55,7 @@ def tfidf_authors_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfi
['[deleted]','AutoModerator']
)
def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
topN=25000):
return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",

View File

@ -35,7 +35,7 @@ def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None,
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
weeks = list(subreddit_names.week.drop_duplicates())
d weeks = sorted(list(subreddit_names.week.drop_duplicates()))
for week in weeks:
print(f"loading matrix: {week}")
mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)

0
visualization/Makefile Normal file
View File