Some improvements to run affinity clustering on larger dataset and
compute density.
This commit is contained in:
parent
e6294b5b90
commit
56269deee3
4
clustering/Makefile
Normal file
4
clustering/Makefile
Normal file
@ -0,0 +1,4 @@
|
||||
srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
|
||||
affinity/subreddit_comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet
|
||||
# $srun_cdsc python3
|
||||
clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.feather affinity/subreddit_comment_authors_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
|
@ -1,12 +1,15 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.cluster import AffinityPropagation
|
||||
import fire
|
||||
|
||||
def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968):
|
||||
def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
|
||||
'''
|
||||
similarities: feather file with a dataframe of similarity scores
|
||||
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
|
||||
damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.
|
||||
'''
|
||||
|
||||
df = pd.read_feather(similarities)
|
||||
@ -16,6 +19,8 @@ def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, conv
|
||||
|
||||
preference = np.quantile(mat,preference_quantile)
|
||||
|
||||
print(f"preference is {preference}")
|
||||
|
||||
print("data loaded")
|
||||
|
||||
clustering = AffinityPropagation(damping=damping,
|
||||
@ -24,6 +29,7 @@ def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, conv
|
||||
copy=False,
|
||||
preference=preference,
|
||||
affinity='precomputed',
|
||||
verbose=verbose,
|
||||
random_state=random_state).fit(mat)
|
||||
|
||||
|
||||
|
7
density/Makefile
Normal file
7
density/Makefile
Normal file
@ -0,0 +1,7 @@
|
||||
all: /gscratch/comdata/output/reddit_density/comment_terms_10000.feather /gscratch/comdata/output/reddit_density/comment_authors_10000.feather
|
||||
|
||||
/gscratch/comdata/output/reddit_density/comment_terms_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
|
||||
python3 overlap_density.py terms --inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather" --agg=pd.DataFrame.sum
|
||||
|
||||
/gscratch/comdata/output/reddit_density/comment_authors_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
|
||||
python3 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather" --agg=pd.DataFrame.sum
|
57
density/overlap_density.py
Normal file
57
density/overlap_density.py
Normal file
@ -0,0 +1,57 @@
|
||||
import pandas as pd
|
||||
from pandas.core.groupby import DataFrameGroupBy as GroupBy
|
||||
import fire
|
||||
import numpy as np
|
||||
|
||||
def overlap_density(inpath, outpath, agg = pd.DataFrame.sum):
|
||||
df = pd.read_feather(inpath)
|
||||
df = df.drop('subreddit',1)
|
||||
np.fill_diagonal(df.values,0)
|
||||
df = agg(df, 0).reset_index()
|
||||
df = df.rename({0:'overlap_density'},axis='columns')
|
||||
df.to_feather(outpath)
|
||||
return df
|
||||
|
||||
def overlap_density_weekly(inpath, outpath, agg = GroupBy.sum):
|
||||
df = pd.read_parquet(inpath)
|
||||
# exclude the diagonal
|
||||
df = df.loc[df.subreddit != df.variable]
|
||||
res = agg(df.groupby(['subreddit','week'])).reset_index()
|
||||
res.to_feather(outpath)
|
||||
return res
|
||||
|
||||
def author_overlap_density(inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather",
|
||||
outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather", agg=pd.DataFrame.sum):
|
||||
if type(agg) == str:
|
||||
agg = eval(agg)
|
||||
|
||||
overlap_density(inpath, outpath, agg)
|
||||
|
||||
def term_overlap_density(inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather",
|
||||
outpath="/gscratch/comdata/output/reddit_density/comment_term_similarity_10000.feather", agg=pd.DataFrame.sum):
|
||||
|
||||
if type(agg) == str:
|
||||
agg = eval(agg)
|
||||
|
||||
overlap_density(inpath, outpath, agg)
|
||||
|
||||
def author_overlap_density_weekly(inpath="/gscratch/comdata/output/reddit_similarity/subreddit_authors_10000_weekly.parquet",
|
||||
outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000_weekly.feather", agg=GroupBy.sum):
|
||||
if type(agg) == str:
|
||||
agg = eval(agg)
|
||||
|
||||
overlap_density_weekly(inpath, outpath, agg)
|
||||
|
||||
def term_overlap_density_weekly(inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet",
|
||||
outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000_weekly.parquet", agg=GroupBy.sum):
|
||||
if type(agg) == str:
|
||||
agg = eval(agg)
|
||||
|
||||
overlap_density_weekly(inpath, outpath, agg)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({'authors':author_overlap_density,
|
||||
'terms':term_overlap_density,
|
||||
'author_weekly':author_overlap_density_weekly,
|
||||
'term_weekly':term_overlap_density_weekly})
|
@ -1 +0,0 @@
|
||||
nathante@n2347.hyak.local.31061:1602221800
|
@ -1 +0,0 @@
|
||||
nathante@n2347.hyak.local.31061:1602221800
|
@ -1,73 +0,0 @@
|
||||
from pyspark.sql import functions as f
|
||||
from pyspark.sql import SparkSession
|
||||
import pandas as pd
|
||||
import fire
|
||||
from pathlib import Path
|
||||
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits
|
||||
|
||||
|
||||
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
print(outfile)
|
||||
print(exclude_phrases)
|
||||
|
||||
tfidf = spark.read.parquet(infile)
|
||||
|
||||
if included_subreddits is None:
|
||||
included_subreddits = select_topN_subreddits(topN)
|
||||
else:
|
||||
included_subreddits = set(open(included_subreddits))
|
||||
|
||||
if exclude_phrases == True:
|
||||
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
|
||||
|
||||
print("creating temporary parquet with matrix indicies")
|
||||
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits)
|
||||
tfidf = spark.read.parquet(tempdir.name)
|
||||
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||||
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||||
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||
spark.stop()
|
||||
|
||||
print("loading matrix")
|
||||
mat = read_tfidf_matrix(tempdir.name, term_colname)
|
||||
print('computing similarities')
|
||||
sims = column_similarities(mat)
|
||||
del mat
|
||||
|
||||
sims = pd.DataFrame(sims.todense())
|
||||
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
|
||||
sims['subreddit'] = subreddit_names.subreddit.values
|
||||
|
||||
p = Path(outfile)
|
||||
|
||||
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||
|
||||
sims.to_feather(outfile)
|
||||
tempdir.cleanup()
|
||||
|
||||
def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
|
||||
'term',
|
||||
outfile,
|
||||
min_df,
|
||||
included_subreddits,
|
||||
topN,
|
||||
exclude_phrases)
|
||||
|
||||
def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000):
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
|
||||
'author',
|
||||
outfile,
|
||||
min_df,
|
||||
included_subreddits,
|
||||
topN,
|
||||
exclude_phrases=False)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({'term':term_cosine_similarities,
|
||||
'author':author_cosine_similarities})
|
||||
|
@ -1 +0,0 @@
|
||||
nathante@n2347.hyak.local.31061:1602221800
|
@ -1 +0,0 @@
|
||||
nathante@n2347.hyak.local.31061:1602221800
|
@ -1,2 +1,5 @@
|
||||
/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
|
||||
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet
|
||||
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.feather
|
||||
|
||||
/gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
|
||||
start_spark_and_run.sh 1 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet
|
||||
|
@ -3,7 +3,7 @@ from pyspark.sql import SparkSession
|
||||
import pandas as pd
|
||||
import fire
|
||||
from pathlib import Path
|
||||
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits
|
||||
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits, column_similarities
|
||||
|
||||
|
||||
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||||
|
@ -1,4 +1,4 @@
|
||||
#!/usr/bin/bash
|
||||
start_spark_cluster.sh
|
||||
spark-submit --master spark://$(hostname):18899 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet
|
||||
spark-submit --master spark://$(hostname):18899 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet
|
||||
stop-all.sh
|
||||
|
@ -45,7 +45,7 @@ def tfidf_terms(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/commen
|
||||
[]
|
||||
)
|
||||
|
||||
def tfidf_authors_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
|
||||
def tfidf_authors_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
|
||||
topN=25000):
|
||||
|
||||
return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_authors.parquet",
|
||||
@ -55,7 +55,7 @@ def tfidf_authors_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfi
|
||||
['[deleted]','AutoModerator']
|
||||
)
|
||||
|
||||
def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
|
||||
def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
|
||||
topN=25000):
|
||||
|
||||
return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
|
||||
|
@ -35,7 +35,7 @@ def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None,
|
||||
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||
spark.stop()
|
||||
|
||||
weeks = list(subreddit_names.week.drop_duplicates())
|
||||
d weeks = sorted(list(subreddit_names.week.drop_duplicates()))
|
||||
for week in weeks:
|
||||
print(f"loading matrix: {week}")
|
||||
mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
|
||||
|
0
visualization/Makefile
Normal file
0
visualization/Makefile
Normal file
Loading…
Reference in New Issue
Block a user