add support for umap->hdbscan clustering method
This commit is contained in:
parent
55b75ea6fc
commit
5a40465a62
@ -3,6 +3,9 @@ srun_singularity=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activat
|
|||||||
similarity_data=/gscratch/comdata/output/reddit_similarity
|
similarity_data=/gscratch/comdata/output/reddit_similarity
|
||||||
clustering_data=/gscratch/comdata/output/reddit_clustering
|
clustering_data=/gscratch/comdata/output/reddit_clustering
|
||||||
kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000]
|
kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000]
|
||||||
|
|
||||||
|
umap_hdbscan_selection_grid=--min_cluster_sizes=[2] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf] --n_neighbors=[5,15,25,50,75,100] --learning_rate=[1] --min_dist=[0,0.1,0.25,0.5,0.75,0.9,0.99] --local_connectivity=[1]
|
||||||
|
|
||||||
hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf]
|
hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf]
|
||||||
affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15]
|
affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15]
|
||||||
|
|
||||||
@ -91,12 +94,28 @@ ${terms_10k_output_lsi}/hdbscan/selection_data.csv:selection.py ${terms_10k_inpu
|
|||||||
${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py hdbscan_clustering.py
|
${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv:clustering.py ${authors_tf_10k_input_lsi} clustering_base.py hdbscan_clustering.py
|
||||||
$(srun_singularity) python3 hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/hdbscan --savefile=${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv $(hdbscan_selection_grid)
|
$(srun_singularity) python3 hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/hdbscan --savefile=${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv $(hdbscan_selection_grid)
|
||||||
|
|
||||||
|
${authors_tf_10k_output_lsi}/umap_hdbscan/selection_data.csv:umap_hdbscan_clustering_lsi.py
|
||||||
|
$(srun_singularity) python3 umap_hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/umap_hdbscan --savefile=${authors_tf_10k_output_lsi}/umap_hdbscan/selection_data.csv $(umap_hdbscan_selection_grid)
|
||||||
|
|
||||||
|
|
||||||
${terms_10k_output_lsi}/best_hdbscan.feather:${terms_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py
|
${terms_10k_output_lsi}/best_hdbscan.feather:${terms_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py
|
||||||
$(srun_singularity) python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2
|
$(srun_singularity) python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2
|
||||||
|
|
||||||
${authors_tf_10k_output_lsi}/best_hdbscan.feather:${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py
|
${authors_tf_10k_output_lsi}/best_hdbscan.feather:${authors_tf_10k_output_lsi}/hdbscan/selection_data.csv pick_best_clustering.py
|
||||||
$(srun_singularity) python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2
|
$(srun_singularity) python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2
|
||||||
|
|
||||||
|
${authors_tf_10k_output_lsi}/best_umap_hdbscan_2.feather:${authors_tf_10k_output_lsi}/umap_hdbscan/selection_data.csv pick_best_clustering.py
|
||||||
|
$(srun_singularity) python3 pick_best_clustering.py $< $@ --min_clusters=50 --max_isolates=5000 --min_cluster_size=2
|
||||||
|
|
||||||
|
best_umap_hdbscan.feather:${authors_tf_10k_output_lsi}/best_umap_hdbscan_2.feather
|
||||||
|
|
||||||
|
# {'lsi_dimensions': 700, 'outpath': '/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/umap_hdbscan', 'silhouette_score': 0.27616957, 'name': 'mcs-2_ms-5_cse-0.05_csm-leaf_nn-15_lr-1.0_md-0.1_lc-1_lsi-700', 'n_clusters': 547, 'n_isolates': 2093, 'silhouette_samples': '/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/umap_hdbscan/silhouette_samples-mcs-2_ms-5_cse-0.05_csm-leaf_nn-15_lr-1.0_md-0.1_lc-1_lsi-700.feather', 'min_cluster_size': 2, 'min_samples': 5, 'cluster_selection_epsilon': 0.05, 'cluster_selection_method': 'leaf', 'n_neighbors': 15, 'learning_rate': 1.0, 'min_dist': 0.1, 'local_connectivity': 1, 'n_isolates_str': '2093', 'n_isolates_0': False}
|
||||||
|
|
||||||
|
best_umap_grid=--min_cluster_sizes=[2] --min_samples=[5] --cluster_selection_epsilons=[0.05] --cluster_selection_methods=[leaf] --n_neighbors=[15] --learning_rate=[1] --min_dist=[0.1] --local_connectivity=[1] --save_step1=True
|
||||||
|
|
||||||
|
umap_hdbscan_coords:
|
||||||
|
python3 umap_hdbscan_clustering_lsi.py --inpath=${authors_tf_10k_input_lsi} --outpath=${authors_tf_10k_output_lsi}/umap_hdbscan --savefile=/dev/null ${best_umap_grid}
|
||||||
|
|
||||||
clean_affinity:
|
clean_affinity:
|
||||||
rm -f ${authors_10k_output}/affinity/selection_data.csv
|
rm -f ${authors_10k_output}/affinity/selection_data.csv
|
||||||
rm -f ${authors_tf_10k_output}/affinity/selection_data.csv
|
rm -f ${authors_tf_10k_output}/affinity/selection_data.csv
|
||||||
@ -159,7 +178,7 @@ clean_lsi_terms:
|
|||||||
|
|
||||||
clean: clean_affinity clean_kmeans clean_hdbscan
|
clean: clean_affinity clean_kmeans clean_hdbscan
|
||||||
|
|
||||||
PHONY: clean clean_affinity clean_kmeans clean_hdbscan clean_authors clean_authors_tf clean_terms terms_10k authors_10k authors_tf_10k
|
PHONY: clean clean_affinity clean_kmeans clean_hdbscan clean_authors clean_authors_tf clean_terms terms_10k authors_10k authors_tf_10k best_umap_hdbscan.feather umap_hdbscan_coords
|
||||||
|
|
||||||
# $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_authors_30k.feather clustering.py
|
# $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS:selection.py $(similarity_data)/subreddit_comment_authors_30k.feather clustering.py
|
||||||
# $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_comment_authors_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS
|
# $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_comment_authors_30k $(selection_grid) -J 10 && touch $(clustering_data)/subreddit_comment_authors_30k.feather/SUCCESS
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import pickle
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -24,6 +25,13 @@ class clustering_job:
|
|||||||
self.outpath.mkdir(parents=True, exist_ok=True)
|
self.outpath.mkdir(parents=True, exist_ok=True)
|
||||||
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
|
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
|
||||||
self.hasrun = True
|
self.hasrun = True
|
||||||
|
self.cleanup()
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
self.cluster_data = None
|
||||||
|
self.mat = None
|
||||||
|
self.clustering=None
|
||||||
|
self.subreddits=None
|
||||||
|
|
||||||
def get_info(self):
|
def get_info(self):
|
||||||
if not self.hasrun:
|
if not self.hasrun:
|
||||||
@ -57,6 +65,7 @@ class clustering_job:
|
|||||||
return score
|
return score
|
||||||
|
|
||||||
def read_distance_mat(self, similarities, use_threads=True):
|
def read_distance_mat(self, similarities, use_threads=True):
|
||||||
|
print(similarities)
|
||||||
df = pd.read_feather(similarities, use_threads=use_threads)
|
df = pd.read_feather(similarities, use_threads=use_threads)
|
||||||
mat = np.array(df.drop('_subreddit',1))
|
mat = np.array(df.drop('_subreddit',1))
|
||||||
n = mat.shape[0]
|
n = mat.shape[0]
|
||||||
@ -95,6 +104,38 @@ class clustering_job:
|
|||||||
|
|
||||||
return cluster_data
|
return cluster_data
|
||||||
|
|
||||||
|
class twoway_clustering_job(clustering_job):
|
||||||
|
def __init__(self, infile, outpath, name, call1, call2, args1, args2):
|
||||||
|
self.outpath = Path(outpath)
|
||||||
|
self.call1 = call1
|
||||||
|
self.args1 = args1
|
||||||
|
self.call2 = call2
|
||||||
|
self.args2 = args2
|
||||||
|
self.infile = Path(infile)
|
||||||
|
self.name = name
|
||||||
|
self.hasrun = False
|
||||||
|
self.args = args1|args2
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
self.subreddits, self.mat = self.read_distance_mat(self.infile)
|
||||||
|
self.step1 = self.call1(self.mat, **self.args1)
|
||||||
|
self.clustering = self.call2(self.mat, self.step1, **self.args2)
|
||||||
|
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
|
||||||
|
self.hasrun = True
|
||||||
|
self.after_run()
|
||||||
|
self.cleanup()
|
||||||
|
|
||||||
|
def after_run():
|
||||||
|
self.score = self.silhouette()
|
||||||
|
self.outpath.mkdir(parents=True, exist_ok=True)
|
||||||
|
print(self.outpath/(self.name+".feather"))
|
||||||
|
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
|
||||||
|
|
||||||
|
|
||||||
|
def cleanup(self):
|
||||||
|
super().cleanup()
|
||||||
|
self.step1 = None
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class clustering_result:
|
class clustering_result:
|
||||||
outpath:Path
|
outpath:Path
|
||||||
|
@ -31,3 +31,19 @@ class grid_sweep:
|
|||||||
outcsv = Path(outcsv)
|
outcsv = Path(outcsv)
|
||||||
outcsv.parent.mkdir(parents=True, exist_ok=True)
|
outcsv.parent.mkdir(parents=True, exist_ok=True)
|
||||||
self.infos.to_csv(outcsv)
|
self.infos.to_csv(outcsv)
|
||||||
|
|
||||||
|
|
||||||
|
class twoway_grid_sweep(grid_sweep):
|
||||||
|
def __init__(self, jobtype, inpath, outpath, namer, args1, args2, *args, **kwargs):
|
||||||
|
self.jobtype = jobtype
|
||||||
|
self.namer = namer
|
||||||
|
prod1 = product(* args1.values())
|
||||||
|
prod2 = product(* args2.values())
|
||||||
|
grid1 = [dict(zip(args1.keys(), pargs)) for pargs in prod1]
|
||||||
|
grid2 = [dict(zip(args2.keys(), pargs)) for pargs in prod2]
|
||||||
|
grid = product(grid1, grid2)
|
||||||
|
inpath = Path(inpath)
|
||||||
|
outpath = Path(outpath)
|
||||||
|
self.hasrun = False
|
||||||
|
self.grid = [(inpath,outpath,namer(**(g[0] | g[1])), g[0], g[1], *args) for g in grid]
|
||||||
|
self.jobs = [jobtype(*g) for g in self.grid]
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
from clustering_base import clustering_job, clustering_result
|
from clustering_base import clustering_job, clustering_result
|
||||||
from grid_sweep import grid_sweep
|
from grid_sweep import grid_sweep, twoway_grid_sweep
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from itertools import chain
|
from itertools import chain
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -27,3 +27,18 @@ class lsi_grid_sweep(grid_sweep):
|
|||||||
self.hasrun = False
|
self.hasrun = False
|
||||||
self.subgrids = [self.subsweep(lsi_path, outpath, lsi_dim, *args, **kwargs) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)]
|
self.subgrids = [self.subsweep(lsi_path, outpath, lsi_dim, *args, **kwargs) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)]
|
||||||
self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids)))
|
self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids)))
|
||||||
|
|
||||||
|
class twoway_lsi_grid_sweep(twoway_grid_sweep):
|
||||||
|
def __init__(self, jobtype, subsweep, inpath, lsi_dimensions, outpath, args1, args2, save_step1):
|
||||||
|
self.jobtype = jobtype
|
||||||
|
self.subsweep = subsweep
|
||||||
|
inpath = Path(inpath)
|
||||||
|
if lsi_dimensions == 'all':
|
||||||
|
lsi_paths = list(inpath.glob("*.feather"))
|
||||||
|
else:
|
||||||
|
lsi_paths = [inpath / (str(dim) + '.feather') for dim in lsi_dimensions]
|
||||||
|
|
||||||
|
lsi_nums = [int(p.stem) for p in lsi_paths]
|
||||||
|
self.hasrun = False
|
||||||
|
self.subgrids = [self.subsweep(lsi_path, outpath, lsi_dim, args1, args2, save_step1) for lsi_dim, lsi_path in zip(lsi_nums, lsi_paths)]
|
||||||
|
self.jobs = list(chain(*map(lambda gs: gs.jobs, self.subgrids)))
|
||||||
|
221
clustering/umap_hdbscan_clustering.py
Normal file
221
clustering/umap_hdbscan_clustering.py
Normal file
@ -0,0 +1,221 @@
|
|||||||
|
from clustering_base import clustering_result, clustering_job, twoway_clustering_job
|
||||||
|
from hdbscan_clustering import hdbscan_clustering_result
|
||||||
|
import umap
|
||||||
|
from grid_sweep import twoway_grid_sweep
|
||||||
|
from dataclasses import dataclass
|
||||||
|
import hdbscan
|
||||||
|
from sklearn.neighbors import NearestNeighbors
|
||||||
|
import plotnine as pn
|
||||||
|
import numpy as np
|
||||||
|
from itertools import product, starmap, chain
|
||||||
|
import pandas as pd
|
||||||
|
from multiprocessing import cpu_count
|
||||||
|
import fire
|
||||||
|
|
||||||
|
def test_select_hdbscan_clustering():
|
||||||
|
# select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
|
||||||
|
# "test_hdbscan_author30k",
|
||||||
|
# min_cluster_sizes=[2],
|
||||||
|
# min_samples=[1,2],
|
||||||
|
# cluster_selection_epsilons=[0,0.05,0.1,0.15],
|
||||||
|
# cluster_selection_methods=['eom','leaf'],
|
||||||
|
# lsi_dimensions='all')
|
||||||
|
inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI"
|
||||||
|
outpath = "test_umap_hdbscan_lsi"
|
||||||
|
min_cluster_sizes=[2,3,4]
|
||||||
|
min_samples=[1,2,3]
|
||||||
|
cluster_selection_epsilons=[0,0.1,0.3,0.5]
|
||||||
|
cluster_selection_methods=[1]
|
||||||
|
lsi_dimensions='all'
|
||||||
|
n_neighbors = [5,10,15,25,35,70,100]
|
||||||
|
learning_rate = [0.1,0.5,1,2]
|
||||||
|
min_dist = [0.5,1,1.5,2]
|
||||||
|
local_connectivity = [1,2,3,4,5]
|
||||||
|
|
||||||
|
hdbscan_params = {"min_cluster_sizes":min_cluster_sizes, "min_samples":min_samples, "cluster_selection_epsilons":cluster_selection_epsilons, "cluster_selection_methods":cluster_selection_methods}
|
||||||
|
umap_params = {"n_neighbors":n_neighbors, "learning_rate":learning_rate, "min_dist":min_dist, "local_connectivity":local_connectivity}
|
||||||
|
gs = umap_hdbscan_grid_sweep(inpath, "all", outpath, hdbscan_params,umap_params)
|
||||||
|
|
||||||
|
# gs.run(20)
|
||||||
|
# gs.save("test_hdbscan/lsi_sweep.csv")
|
||||||
|
|
||||||
|
|
||||||
|
# job1 = hdbscan_lsi_job(infile=inpath, outpath=outpath, name="test", lsi_dims=500, min_cluster_size=2, min_samples=1,cluster_selection_epsilon=0,cluster_selection_method='eom')
|
||||||
|
# job1.run()
|
||||||
|
# print(job1.get_info())
|
||||||
|
|
||||||
|
# df = pd.read_csv("test_hdbscan/selection_data.csv")
|
||||||
|
# test_select_hdbscan_clustering()
|
||||||
|
# check_clusters = pd.read_feather("test_hdbscan/500_2_2_0.1_eom.feather")
|
||||||
|
# silscores = pd.read_feather("test_hdbscan/silhouette_samples500_2_2_0.1_eom.feather")
|
||||||
|
# c = check_clusters.merge(silscores,on='subreddit')# fire.Fire(select_hdbscan_clustering)
|
||||||
|
class umap_hdbscan_grid_sweep(twoway_grid_sweep):
|
||||||
|
def __init__(self,
|
||||||
|
inpath,
|
||||||
|
outpath,
|
||||||
|
umap_params,
|
||||||
|
hdbscan_params):
|
||||||
|
|
||||||
|
super().__init__(umap_hdbscan_job, inpath, outpath, self.namer, umap_params, hdbscan_params)
|
||||||
|
|
||||||
|
def namer(self,
|
||||||
|
min_cluster_size,
|
||||||
|
min_samples,
|
||||||
|
cluster_selection_epsilon,
|
||||||
|
cluster_selection_method,
|
||||||
|
n_neighbors,
|
||||||
|
learning_rate,
|
||||||
|
min_dist,
|
||||||
|
local_connectivity
|
||||||
|
):
|
||||||
|
return f"mcs-{min_cluster_size}_ms-{min_samples}_cse-{cluster_selection_epsilon}_csm-{cluster_selection_method}_nn-{n_neighbors}_lr-{learning_rate}_md-{min_dist}_lc-{local_connectivity}"
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class umap_hdbscan_clustering_result(hdbscan_clustering_result):
|
||||||
|
n_neighbors:int
|
||||||
|
learning_rate:float
|
||||||
|
min_dist:float
|
||||||
|
local_connectivity:int
|
||||||
|
|
||||||
|
class umap_hdbscan_job(twoway_clustering_job):
|
||||||
|
def __init__(self, infile, outpath, name,
|
||||||
|
umap_args = {"n_neighbors":15, "learning_rate":1, "min_dist":1, "local_connectivity":1},
|
||||||
|
hdbscan_args = {"min_cluster_size":2, "min_samples":1, "cluster_selection_epsilon":0, "cluster_selection_method":'eom'},
|
||||||
|
save_step1 = False,
|
||||||
|
*args,
|
||||||
|
**kwargs):
|
||||||
|
super().__init__(infile,
|
||||||
|
outpath,
|
||||||
|
name,
|
||||||
|
call1=umap_hdbscan_job._umap_embedding,
|
||||||
|
call2=umap_hdbscan_job._hdbscan_clustering,
|
||||||
|
args1=umap_args,
|
||||||
|
args2=hdbscan_args,
|
||||||
|
save_step1=save_step1,
|
||||||
|
*args,
|
||||||
|
**kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
self.n_neighbors = umap_args['n_neighbors']
|
||||||
|
self.learning_rate = umap_args['learning_rate']
|
||||||
|
self.min_dist = umap_args['min_dist']
|
||||||
|
self.local_connectivity = umap_args['local_connectivity']
|
||||||
|
self.min_cluster_size = hdbscan_args['min_cluster_size']
|
||||||
|
self.min_samples = hdbscan_args['min_samples']
|
||||||
|
self.cluster_selection_epsilon = hdbscan_args['cluster_selection_epsilon']
|
||||||
|
self.cluster_selection_method = hdbscan_args['cluster_selection_method']
|
||||||
|
|
||||||
|
def after_run(self):
|
||||||
|
coords = self.step1.emedding_
|
||||||
|
self.cluster_data['x'] = coords[:,0]
|
||||||
|
self.cluster_data['y'] = coords[:,1]
|
||||||
|
super().after_run()
|
||||||
|
|
||||||
|
|
||||||
|
def _umap_embedding(mat, **umap_args):
|
||||||
|
print(f"running umap embedding. umap_args:{umap_args}")
|
||||||
|
umapmodel = umap.UMAP(metric='precomputed', **umap_args)
|
||||||
|
umapmodel = umapmodel.fit(mat)
|
||||||
|
return umapmodel
|
||||||
|
|
||||||
|
def _hdbscan_clustering(mat, umapmodel, **hdbscan_args):
|
||||||
|
print(f"running hdbascan clustering. hdbscan_args:{hdbscan_args}")
|
||||||
|
|
||||||
|
umap_coords = umapmodel.transform(mat)
|
||||||
|
|
||||||
|
clusterer = hdbscan.HDBSCAN(metric='euclidean',
|
||||||
|
core_dist_n_jobs=cpu_count(),
|
||||||
|
**hdbscan_args
|
||||||
|
)
|
||||||
|
|
||||||
|
clustering = clusterer.fit(umap_coords)
|
||||||
|
|
||||||
|
return(clustering)
|
||||||
|
|
||||||
|
def get_info(self):
|
||||||
|
result = super().get_info()
|
||||||
|
self.result = umap_hdbscan_clustering_result(**result.__dict__,
|
||||||
|
min_cluster_size=self.min_cluster_size,
|
||||||
|
min_samples=self.min_samples,
|
||||||
|
cluster_selection_epsilon=self.cluster_selection_epsilon,
|
||||||
|
cluster_selection_method=self.cluster_selection_method,
|
||||||
|
n_neighbors = self.n_neighbors,
|
||||||
|
learning_rate = self.learning_rate,
|
||||||
|
min_dist = self.min_dist,
|
||||||
|
local_connectivity=self.local_connectivity
|
||||||
|
)
|
||||||
|
return self.result
|
||||||
|
|
||||||
|
def run_umap_hdbscan_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], learning_rate=[1], min_dist=[1], local_connectivity=[1],
|
||||||
|
min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom']):
|
||||||
|
"""Run umap + hdbscan clustering once or more with different parameters.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
umap_hdbscan_clustering.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --n_neighbors=<csv> --learning_rate=<csv> --min_dist=<csv> --local_connectivity=<csv> --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=<csv "eom"|"leaf">
|
||||||
|
|
||||||
|
Keword arguments:
|
||||||
|
savefile: path to save the metadata and diagnostics
|
||||||
|
inpath: path to feather data containing a labeled matrix of subreddit similarities.
|
||||||
|
outpath: path to output fit kmeans clusterings.
|
||||||
|
n_neighbors: umap parameter takes integers greater than 1
|
||||||
|
learning_rate: umap parameter takes positive real values
|
||||||
|
min_dist: umap parameter takes positive real values
|
||||||
|
local_connectivity: umap parameter takes positive integers
|
||||||
|
min_cluster_sizes: one or more integers indicating the minumum cluster size
|
||||||
|
min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
|
||||||
|
cluster_selection_epsilon: one or more similarity thresholds for transition from dbscan to hdbscan
|
||||||
|
cluster_selection_method: "eom" or "leaf" eom gives larger clusters.
|
||||||
|
"""
|
||||||
|
|
||||||
|
umap_args = {'n_neighbors':list(map(int, n_neighbors)),
|
||||||
|
'learning_rate':list(map(float,learning_rate)),
|
||||||
|
'min_dist':list(map(float,min_dist)),
|
||||||
|
'local_connectivity':list(map(int,local_connectivity)),
|
||||||
|
}
|
||||||
|
|
||||||
|
hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
|
||||||
|
'min_samples':list(map(int,min_samples)),
|
||||||
|
'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
|
||||||
|
'cluster_selection_method':cluster_selection_methods}
|
||||||
|
|
||||||
|
obj = umap_hdbscan_grid_sweep(inpath,
|
||||||
|
outpath,
|
||||||
|
umap_args,
|
||||||
|
hdbscan_args)
|
||||||
|
obj.run(cores=10)
|
||||||
|
obj.save(savefile)
|
||||||
|
|
||||||
|
|
||||||
|
def KNN_distances_plot(mat,outname,k=2):
|
||||||
|
nbrs = NearestNeighbors(n_neighbors=k,algorithm='auto',metric='precomputed').fit(mat)
|
||||||
|
distances, indices = nbrs.kneighbors(mat)
|
||||||
|
d2 = distances[:,-1]
|
||||||
|
df = pd.DataFrame({'dist':d2})
|
||||||
|
df = df.sort_values("dist",ascending=False)
|
||||||
|
df['idx'] = np.arange(0,d2.shape[0]) + 1
|
||||||
|
p = pn.qplot(x='idx',y='dist',data=df,geom='line') + pn.scales.scale_y_continuous(minor_breaks = np.arange(0,50)/50,
|
||||||
|
breaks = np.arange(0,10)/10)
|
||||||
|
p.save(outname,width=16,height=10)
|
||||||
|
|
||||||
|
def make_KNN_plots():
|
||||||
|
similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10k.feather"
|
||||||
|
subreddits, mat = read_similarity_mat(similarities)
|
||||||
|
mat = sim_to_dist(mat)
|
||||||
|
|
||||||
|
KNN_distances_plot(mat,k=2,outname='terms_knn_dist2.png')
|
||||||
|
|
||||||
|
similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10k.feather"
|
||||||
|
subreddits, mat = read_similarity_mat(similarities)
|
||||||
|
mat = sim_to_dist(mat)
|
||||||
|
KNN_distances_plot(mat,k=2,outname='authors_knn_dist2.png')
|
||||||
|
|
||||||
|
similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k.feather"
|
||||||
|
subreddits, mat = read_similarity_mat(similarities)
|
||||||
|
mat = sim_to_dist(mat)
|
||||||
|
KNN_distances_plot(mat,k=2,outname='authors-tf_knn_dist2.png')
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(run_umap_hdbscan_grid_sweep)
|
||||||
|
|
||||||
|
# test_select_hdbscan_clustering()
|
||||||
|
#fire.Fire(select_hdbscan_clustering)
|
114
clustering/umap_hdbscan_clustering_lsi.py
Normal file
114
clustering/umap_hdbscan_clustering_lsi.py
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
from umap_hdbscan_clustering import umap_hdbscan_job, umap_hdbscan_grid_sweep, umap_hdbscan_clustering_result
|
||||||
|
from lsi_base import twoway_lsi_grid_sweep, lsi_mixin, lsi_result_mixin
|
||||||
|
from grid_sweep import twoway_grid_sweep
|
||||||
|
import fire
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class umap_hdbscan_clustering_result_lsi(umap_hdbscan_clustering_result, lsi_result_mixin):
|
||||||
|
pass
|
||||||
|
|
||||||
|
class umap_hdbscan_lsi_job(umap_hdbscan_job, lsi_mixin):
|
||||||
|
def __init__(self, infile, outpath, name, umap_args, hdbscan_args, lsi_dims, save_step1=False):
|
||||||
|
super().__init__(
|
||||||
|
infile,
|
||||||
|
outpath,
|
||||||
|
name,
|
||||||
|
umap_args,
|
||||||
|
hdbscan_args,
|
||||||
|
save_step1
|
||||||
|
)
|
||||||
|
super().set_lsi_dims(lsi_dims)
|
||||||
|
|
||||||
|
def get_info(self):
|
||||||
|
partial_result = super().get_info()
|
||||||
|
self.result = umap_hdbscan_clustering_result_lsi(**partial_result.__dict__,
|
||||||
|
lsi_dimensions=self.lsi_dims)
|
||||||
|
return self.result
|
||||||
|
|
||||||
|
class umap_hdbscan_lsi_grid_sweep(twoway_lsi_grid_sweep):
|
||||||
|
def __init__(self,
|
||||||
|
inpath,
|
||||||
|
lsi_dims,
|
||||||
|
outpath,
|
||||||
|
umap_args,
|
||||||
|
hdbscan_args,
|
||||||
|
save_step1
|
||||||
|
):
|
||||||
|
|
||||||
|
super().__init__(umap_hdbscan_lsi_job,
|
||||||
|
_umap_hdbscan_lsi_grid_sweep,
|
||||||
|
inpath,
|
||||||
|
lsi_dims,
|
||||||
|
outpath,
|
||||||
|
umap_args,
|
||||||
|
hdbscan_args,
|
||||||
|
save_step1
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class _umap_hdbscan_lsi_grid_sweep(twoway_grid_sweep):
|
||||||
|
def __init__(self,
|
||||||
|
inpath,
|
||||||
|
outpath,
|
||||||
|
lsi_dim,
|
||||||
|
umap_args,
|
||||||
|
hdbscan_args,
|
||||||
|
save_step1):
|
||||||
|
|
||||||
|
self.lsi_dim = lsi_dim
|
||||||
|
self.jobtype = umap_hdbscan_lsi_job
|
||||||
|
super().__init__(self.jobtype, inpath, outpath, self.namer, umap_args, hdbscan_args, save_step1, lsi_dim)
|
||||||
|
|
||||||
|
|
||||||
|
def namer(self, *args, **kwargs):
|
||||||
|
s = umap_hdbscan_grid_sweep.namer(self, *args, **kwargs)
|
||||||
|
s += f"_lsi-{self.lsi_dim}"
|
||||||
|
return s
|
||||||
|
|
||||||
|
def run_umap_hdbscan_lsi_grid_sweep(savefile, inpath, outpath, n_neighbors = [15], learning_rate=[1], min_dist=[1], local_connectivity=[1],
|
||||||
|
min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=['eom'], lsi_dimensions='all', save_step1 = False):
|
||||||
|
"""Run hdbscan clustering once or more with different parameters.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
hdbscan_clustering_lsi --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=[eom]> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
|
||||||
|
|
||||||
|
Keword arguments:
|
||||||
|
savefile: path to save the metadata and diagnostics
|
||||||
|
inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
|
||||||
|
outpath: path to output fit clusterings.
|
||||||
|
min_cluster_sizes: one or more integers indicating the minumum cluster size
|
||||||
|
min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
|
||||||
|
cluster_selection_epsilons: one or more similarity thresholds for transition from dbscan to hdbscan
|
||||||
|
cluster_selection_methods: one or more of "eom" or "leaf" eom gives larger clusters.
|
||||||
|
lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
umap_args = {'n_neighbors':list(map(int, n_neighbors)),
|
||||||
|
'learning_rate':list(map(float,learning_rate)),
|
||||||
|
'min_dist':list(map(float,min_dist)),
|
||||||
|
'local_connectivity':list(map(int,local_connectivity)),
|
||||||
|
}
|
||||||
|
|
||||||
|
hdbscan_args = {'min_cluster_size':list(map(int,min_cluster_sizes)),
|
||||||
|
'min_samples':list(map(int,min_samples)),
|
||||||
|
'cluster_selection_epsilon':list(map(float,cluster_selection_epsilons)),
|
||||||
|
'cluster_selection_method':cluster_selection_methods}
|
||||||
|
|
||||||
|
obj = umap_hdbscan_lsi_grid_sweep(inpath,
|
||||||
|
lsi_dimensions,
|
||||||
|
outpath,
|
||||||
|
umap_args,
|
||||||
|
hdbscan_args,
|
||||||
|
save_step1
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
obj.run(10)
|
||||||
|
obj.save(savefile)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire(run_umap_hdbscan_lsi_grid_sweep)
|
Loading…
Reference in New Issue
Block a user