13
0

Improvements to idf code

This commit is contained in:
Nate E TeBlunthuis 2020-11-10 13:12:11 -08:00
parent 8b8c45ee2d
commit 6edd155749
2 changed files with 35 additions and 40 deletions

View File

@ -25,19 +25,19 @@ authors = authors.withColumn('author_id',f.monotonically_increasing_id())
# map terms to indexes in the tfs and the idfs # map terms to indexes in the tfs and the idfs
df = df.join(terms,on='author') df = df.join(authors,on='author')
idf = idf.join(terms,on='author') idf = idf.join(authors,on='author')
# join on subreddit/term/week to create tf/dfs indexed by term # join on subreddit/term/week to create tf/dfs indexed by term
df = df.join(idf, on=['author_id','week','author']) df = df.join(idf, on=['author_id','week','author'])
# agg terms by subreddit to make sparse tf/df vectors # agg terms by subreddit to make sparse tf/df vectors
df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf) df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf)
df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps')) df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('author_id','tf_idf')).alias('tfidf_maps'))
df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps')) df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
# output: subreddit | week | tf/df # output: subreddit | week | tf/df
df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf_authors.parquet',mode='overwrite',compression='snappy') df.write.json('/gscratch/comdata/users/nathante/test_tfidf_authors.parquet',mode='overwrite',compression='snappy')

View File

@ -1,58 +1,53 @@
from pyspark.sql import functions as f from pyspark.sql import functions as f
from pyspark.sql import SparkSession from pyspark.sql import SparkSession
from pyspark.sql import Window
## TODO:need to exclude automoderator / bot posts.
## TODO:need to exclude better handle hyperlinks.
spark = SparkSession.builder.getOrCreate() spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp") df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp")
max_subreddit_week_terms = df.groupby(['subreddit','week']).max('tf') include_subs = set(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"))
max_subreddit_week_terms = max_subreddit_week_terms.withColumnRenamed('max(tf)','sr_week_max_tf') include_subs = {s.strip('\n') for s in include_subs}
df = df.join(max_subreddit_week_terms, ['subreddit','week']) # aggregate counts by week. now subreddit-term is distinct
df = df.filter(df.subreddit.isin(include_subs))
df = df.groupBy(['subreddit','term']).agg(f.sum('tf').alias('tf'))
df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf) max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
# group by term / week df = df.join(max_subreddit_terms, on='subreddit')
idf = df.groupby(['term','week']).count()
idf = idf.withColumnRenamed('count','idf') df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
# output: term | week | df # group by term. term is unique
#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy') idf = df.groupby(['term']).count()
N_docs = df.select('subreddit').distinct().count()
idf = idf.withColumn('idf',f.log(N_docs/f.col('count')))
# collect the dictionary to make a pydict of terms to indexes # collect the dictionary to make a pydict of terms to indexes
terms = idf.select('term').distinct() terms = idf.select('term').distinct() # terms are distinct
terms = terms.withColumn('term_id',f.monotonically_increasing_id()) terms = terms.withColumn('term_id',f.row_number().over(Window.orderBy("term"))) # term ids are distinct
# make subreddit ids
subreddits = df.select(['subreddit']).distinct()
subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
# print('collected terms') df = df.join(subreddits,on='subreddit')
# terms = [t.term for t in terms]
# NTerms = len(terms)
# term_id_map = {term:i for i,term in enumerate(sorted(terms))}
# term_id_map = spark.sparkContext.broadcast(term_id_map)
# print('term_id_map is broadcasted')
# def map_term(x):
# return term_id_map.value[x]
# map_term_udf = f.udf(map_term)
# map terms to indexes in the tfs and the idfs # map terms to indexes in the tfs and the idfs
df = df.join(terms,on='term') df = df.join(terms,on='term') # subreddit-term-id is unique
idf = idf.join(terms,on='term') idf = idf.join(terms,on='term')
# join on subreddit/term/week to create tf/dfs indexed by term # join on subreddit/term to create tf/dfs indexed by term
df = df.join(idf, on=['term_id','week','term']) df = df.join(idf, on=['term_id','term'])
# agg terms by subreddit to make sparse tf/df vectors # agg terms by subreddit to make sparse tf/df vectors
df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf) df = df.withColumn("tf_idf", (0.5 + (0.5 * df.relative_tf) * df.idf))
df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps')) df.write.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet',mode='overwrite',compression='snappy')
df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
# output: subreddit | week | tf/df
df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf.parquet',mode='overwrite',compression='snappy')