13
0

Improve tokenization following data. Generate author counts.

This commit is contained in:
Nate E TeBlunthuis 2020-08-04 13:24:37 -07:00
parent b3ffaaba1d
commit 78ab514d6b

View File

@ -7,12 +7,33 @@ from collections import Counter
import pandas as pd import pandas as pd
import os import os
import datetime import datetime
from nltk import wordpunct_tokenize, MWETokenizer import re
from nltk import wordpunct_tokenize, MWETokenizer, sent_tokenize
from nltk.corpus import stopwords
from nltk.util import ngrams
import string
from random import random
# remove urls
# taken from https://stackoverflow.com/questions/3809401/what-is-a-good-regular-expression-to-match-a-url
urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)")
# compute term frequencies for comments in each subreddit by week # compute term frequencies for comments in each subreddit by week
def weekly_tf(partition): def weekly_tf(partition, mwe_pass = 'first'):
dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet') dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet')
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body'])
if not os.path.exists("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/"):
os.mkdir("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/")
if not os.path.exists("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/"):
os.mkdir("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
ngram_output = partition.replace("parquet","txt")
if os.path.exists(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}"):
os.remove(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}")
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False), schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
pa.field('term', pa.string(), nullable=False), pa.field('term', pa.string(), nullable=False),
@ -20,6 +41,12 @@ def weekly_tf(partition):
pa.field('tf', pa.int64(), nullable=False)] pa.field('tf', pa.int64(), nullable=False)]
) )
author_schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
pa.field('author', pa.string(), nullable=False),
pa.field('week', pa.date32(), nullable=False),
pa.field('tf', pa.int64(), nullable=False)]
)
dfs = (b.to_pandas() for b in batches) dfs = (b.to_pandas() for b in batches)
def add_week(df): def add_week(df):
@ -37,34 +64,106 @@ def weekly_tf(partition):
subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week)) subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
tokenizer = MWETokenizer() mwe_tokenize = MWETokenizer().tokenize
def remove_punct(sentence):
new_sentence = []
for token in sentence:
new_token = ''
for c in token:
if c not in string.punctuation:
new_token += c
if len(new_token) > 0:
new_sentence.append(new_token)
return new_sentence
stopWords = set(stopwords.words('english'))
# we follow the approach described in datta, phelan, adar 2017
def my_tokenizer(text):
# remove stopwords, punctuation, urls, lower case
# lowercase
text = text.lower()
# remove urls
text = urlregex.sub("", text)
# sentence tokenize
sentences = sent_tokenize(text)
# wordpunct_tokenize
sentences = map(wordpunct_tokenize, sentences)
# remove punctuation
sentences = map(remove_punct, sentences)
# remove sentences with less than 2 words
sentences = filter(lambda sentence: len(sentence) > 2, sentences)
# datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase.
# they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms
# here we take a 10 percent sample of sentences
if mwe_pass == 'first':
sentences = list(sentences)
for sentence in sentences:
if random() <= 0.1:
grams = list(chain(*map(lambda i : ngrams(sentence,i),range(4))))
with open(f'/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}','a') as gram_file:
for ng in grams:
gram_file.write(' '.join(ng) + '\n')
for token in sentence:
if token not in stopWords:
yield token
else:
# remove stopWords
sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
return chain(* sentences)
def tf_comments(subreddit_weeks): def tf_comments(subreddit_weeks):
for key, posts in subreddit_weeks: for key, posts in subreddit_weeks:
subreddit, week = key subreddit, week = key
tfs = Counter([]) tfs = Counter([])
authors = Counter([])
for post in posts: for post in posts:
tfs.update(tokenizer.tokenize(wordpunct_tokenize(post.body.lower()))) tokens = my_tokenizer(post.body)
tfs.update(tokens)
authors.update([post.author])
for term, tf in tfs.items(): for term, tf in tfs.items():
yield [subreddit, term, week, tf] yield [True, subreddit, term, week, tf]
for author, tf in authors.items():
yield [False, subreddit, author, week, tf]
outrows = tf_comments(subreddit_weeks) outrows = tf_comments(subreddit_weeks)
outchunksize = 10000 outchunksize = 10000
with pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer: with pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
while True: while True:
chunk = islice(outrows,outchunksize) chunk = islice(outrows,outchunksize)
pddf = pd.DataFrame(chunk, columns=schema.names) pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
print(pddf) print(pddf)
author_pddf = pddf.loc[pddf.is_token == False]
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
author_pddf = author_pddf.loc[:,author_schema.names]
pddf = pddf.loc[pddf.is_token == True, schema.names]
print(pddf)
print(author_pddf)
table = pa.Table.from_pandas(pddf,schema=schema) table = pa.Table.from_pandas(pddf,schema=schema)
author_table = pa.Table.from_pandas(author_pddf,schema=author_schema)
if table.shape[0] == 0: if table.shape[0] == 0:
break break
writer.write_table(table) writer.write_table(table)
author_writer.write_table(author_table)
writer.close() writer.close()
author_writer.close()
def gen_task_list(): def gen_task_list():