Improve tokenization following data. Generate author counts.
This commit is contained in:
parent
b3ffaaba1d
commit
78ab514d6b
@ -7,12 +7,33 @@ from collections import Counter
|
||||
import pandas as pd
|
||||
import os
|
||||
import datetime
|
||||
from nltk import wordpunct_tokenize, MWETokenizer
|
||||
import re
|
||||
from nltk import wordpunct_tokenize, MWETokenizer, sent_tokenize
|
||||
from nltk.corpus import stopwords
|
||||
from nltk.util import ngrams
|
||||
import string
|
||||
from random import random
|
||||
|
||||
# remove urls
|
||||
# taken from https://stackoverflow.com/questions/3809401/what-is-a-good-regular-expression-to-match-a-url
|
||||
urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)")
|
||||
|
||||
# compute term frequencies for comments in each subreddit by week
|
||||
def weekly_tf(partition):
|
||||
def weekly_tf(partition, mwe_pass = 'first'):
|
||||
dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet')
|
||||
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body'])
|
||||
|
||||
if not os.path.exists("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/"):
|
||||
os.mkdir("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/")
|
||||
|
||||
if not os.path.exists("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/"):
|
||||
os.mkdir("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
|
||||
|
||||
ngram_output = partition.replace("parquet","txt")
|
||||
|
||||
if os.path.exists(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}"):
|
||||
os.remove(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}")
|
||||
|
||||
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
|
||||
|
||||
schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
|
||||
pa.field('term', pa.string(), nullable=False),
|
||||
@ -20,6 +41,12 @@ def weekly_tf(partition):
|
||||
pa.field('tf', pa.int64(), nullable=False)]
|
||||
)
|
||||
|
||||
author_schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
|
||||
pa.field('author', pa.string(), nullable=False),
|
||||
pa.field('week', pa.date32(), nullable=False),
|
||||
pa.field('tf', pa.int64(), nullable=False)]
|
||||
)
|
||||
|
||||
dfs = (b.to_pandas() for b in batches)
|
||||
|
||||
def add_week(df):
|
||||
@ -37,34 +64,106 @@ def weekly_tf(partition):
|
||||
|
||||
subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
|
||||
|
||||
tokenizer = MWETokenizer()
|
||||
mwe_tokenize = MWETokenizer().tokenize
|
||||
|
||||
def remove_punct(sentence):
|
||||
new_sentence = []
|
||||
for token in sentence:
|
||||
new_token = ''
|
||||
for c in token:
|
||||
if c not in string.punctuation:
|
||||
new_token += c
|
||||
if len(new_token) > 0:
|
||||
new_sentence.append(new_token)
|
||||
return new_sentence
|
||||
|
||||
|
||||
stopWords = set(stopwords.words('english'))
|
||||
|
||||
# we follow the approach described in datta, phelan, adar 2017
|
||||
def my_tokenizer(text):
|
||||
# remove stopwords, punctuation, urls, lower case
|
||||
# lowercase
|
||||
text = text.lower()
|
||||
|
||||
# remove urls
|
||||
text = urlregex.sub("", text)
|
||||
|
||||
# sentence tokenize
|
||||
sentences = sent_tokenize(text)
|
||||
|
||||
# wordpunct_tokenize
|
||||
sentences = map(wordpunct_tokenize, sentences)
|
||||
|
||||
# remove punctuation
|
||||
|
||||
sentences = map(remove_punct, sentences)
|
||||
|
||||
# remove sentences with less than 2 words
|
||||
sentences = filter(lambda sentence: len(sentence) > 2, sentences)
|
||||
|
||||
# datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase.
|
||||
# they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms
|
||||
# here we take a 10 percent sample of sentences
|
||||
if mwe_pass == 'first':
|
||||
sentences = list(sentences)
|
||||
for sentence in sentences:
|
||||
if random() <= 0.1:
|
||||
grams = list(chain(*map(lambda i : ngrams(sentence,i),range(4))))
|
||||
with open(f'/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}','a') as gram_file:
|
||||
for ng in grams:
|
||||
gram_file.write(' '.join(ng) + '\n')
|
||||
for token in sentence:
|
||||
if token not in stopWords:
|
||||
yield token
|
||||
|
||||
else:
|
||||
# remove stopWords
|
||||
sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
|
||||
return chain(* sentences)
|
||||
|
||||
def tf_comments(subreddit_weeks):
|
||||
for key, posts in subreddit_weeks:
|
||||
subreddit, week = key
|
||||
tfs = Counter([])
|
||||
|
||||
authors = Counter([])
|
||||
for post in posts:
|
||||
tfs.update(tokenizer.tokenize(wordpunct_tokenize(post.body.lower())))
|
||||
tokens = my_tokenizer(post.body)
|
||||
tfs.update(tokens)
|
||||
authors.update([post.author])
|
||||
|
||||
for term, tf in tfs.items():
|
||||
yield [subreddit, term, week, tf]
|
||||
|
||||
yield [True, subreddit, term, week, tf]
|
||||
|
||||
for author, tf in authors.items():
|
||||
yield [False, subreddit, author, week, tf]
|
||||
|
||||
outrows = tf_comments(subreddit_weeks)
|
||||
|
||||
outchunksize = 10000
|
||||
|
||||
with pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer:
|
||||
with pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
|
||||
while True:
|
||||
chunk = islice(outrows,outchunksize)
|
||||
pddf = pd.DataFrame(chunk, columns=schema.names)
|
||||
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
|
||||
print(pddf)
|
||||
author_pddf = pddf.loc[pddf.is_token == False]
|
||||
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
|
||||
author_pddf = author_pddf.loc[:,author_schema.names]
|
||||
|
||||
pddf = pddf.loc[pddf.is_token == True, schema.names]
|
||||
|
||||
print(pddf)
|
||||
print(author_pddf)
|
||||
table = pa.Table.from_pandas(pddf,schema=schema)
|
||||
author_table = pa.Table.from_pandas(author_pddf,schema=author_schema)
|
||||
if table.shape[0] == 0:
|
||||
break
|
||||
writer.write_table(table)
|
||||
|
||||
author_writer.write_table(author_table)
|
||||
|
||||
writer.close()
|
||||
author_writer.close()
|
||||
|
||||
|
||||
def gen_task_list():
|
||||
|
Loading…
Reference in New Issue
Block a user