13
0

changes from dirty branch.

This commit is contained in:
Nathan TeBlunthuis 2023-05-18 10:29:08 -07:00
parent c190791364
commit 811a0d87c4
7 changed files with 30 additions and 22 deletions

View File

@ -4,7 +4,7 @@ similarity_data=/gscratch/comdata/output/reddit_similarity
clustering_data=/gscratch/comdata/output/reddit_clustering clustering_data=/gscratch/comdata/output/reddit_clustering
kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000] kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000]
umap_hdbscan_selection_grid=--min_cluster_sizes=[2] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf] --n_neighbors=[5,15,25,50,75,100] --learning_rate=[1] --min_dist=[0,0.1,0.25,0.5,0.75,0.9,0.99] --local_connectivity=[1] --densmap=[True,False] --n_components=[2,5,10] umap_hdbscan_selection_grid=--min_cluster_sizes=[2] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf] --n_neighbors=[5,15,25,50,75,100] --learning_rate=[1] --min_dist=[0,0.1,0.25,0.5,0.75,0.9,0.99] --local_connectivity=[1] --densmap=[True,False] --n_components=[2,5,10,15,25]
hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf] hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf]
affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15] affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15]

View File

@ -21,9 +21,9 @@ class clustering_job:
self.subreddits, self.mat = self.read_distance_mat(self.infile) self.subreddits, self.mat = self.read_distance_mat(self.infile)
self.clustering = self.call(self.mat, *self.args, **self.kwargs) self.clustering = self.call(self.mat, *self.args, **self.kwargs)
self.cluster_data = self.process_clustering(self.clustering, self.subreddits) self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
self.score = self.silhouette()
self.outpath.mkdir(parents=True, exist_ok=True) self.outpath.mkdir(parents=True, exist_ok=True)
self.cluster_data.to_feather(self.outpath/(self.name + ".feather")) self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
self.hasrun = True self.hasrun = True
self.cleanup() self.cleanup()
@ -62,6 +62,7 @@ class clustering_job:
else: else:
score = None score = None
self.silsampout = None self.silsampout = None
return score return score
def read_distance_mat(self, similarities, use_threads=True): def read_distance_mat(self, similarities, use_threads=True):
@ -81,9 +82,13 @@ class clustering_job:
self.n_clusters = len(set(clusters)) self.n_clusters = len(set(clusters))
print(f"found {self.n_clusters} clusters") print(f"found {self.n_clusters} clusters")
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_}) cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
self.score = self.silhouette()
print(f"silhouette_score:{self.score}")
cluster_sizes = cluster_data.groupby("cluster").count().reset_index() cluster_sizes = cluster_data.groupby("cluster").count().reset_index()
print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members") print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members")
@ -125,7 +130,7 @@ class twoway_clustering_job(clustering_job):
self.after_run() self.after_run()
self.cleanup() self.cleanup()
def after_run(): def after_run(self):
self.score = self.silhouette() self.score = self.silhouette()
self.outpath.mkdir(parents=True, exist_ok=True) self.outpath.mkdir(parents=True, exist_ok=True)
print(self.outpath/(self.name+".feather")) print(self.outpath/(self.name+".feather"))

View File

@ -110,7 +110,7 @@ class umap_hdbscan_job(twoway_clustering_job):
self.cluster_selection_method = hdbscan_args['cluster_selection_method'] self.cluster_selection_method = hdbscan_args['cluster_selection_method']
def after_run(self): def after_run(self):
coords = self.step1.emedding_ coords = self.step1.embedding_
self.cluster_data['x'] = coords[:,0] self.cluster_data['x'] = coords[:,0]
self.cluster_data['y'] = coords[:,1] self.cluster_data['y'] = coords[:,1]
super().after_run() super().after_run()

View File

@ -9,7 +9,7 @@ from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate() spark = SparkSession.builder.getOrCreate()
conf = pyspark.SparkConf().setAppName("Reddit submissions to parquet") conf = pyspark.SparkConf().setAppName("Reddit submissions to parquet")
conf = conf.set("spark.sql.shuffle.partitions",2000) conf = conf.set("spark.sql.shuffle.partitions",2400)
conf = conf.set('spark.sql.crossJoin.enabled',"true") conf = conf.set('spark.sql.crossJoin.enabled',"true")
conf = conf.set('spark.debug.maxToStringFields',200) conf = conf.set('spark.debug.maxToStringFields',200)
sc = spark.sparkContext sc = spark.sparkContext
@ -25,12 +25,13 @@ df = df.withColumn("Month",f.month(f.col("CreatedAt")))
df = df.withColumn("Year",f.year(f.col("CreatedAt"))) df = df.withColumn("Year",f.year(f.col("CreatedAt")))
df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt"))) df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
df = df.repartition('subreddit') # df = df.repartition(1200,'subreddit')
df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True) # df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True) # df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
df2.write.parquet("/gscratch/scrubbed/comdata/output/reddit_comments_by_subreddit.parquet", mode='overwrite', compression='snappy') # df2.write.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_subreddit.parquet", mode='overwrite', compression='snappy')
df = df.repartition('author') #df = spark.read.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_subreddit.parquet")
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True) df = df.repartition(2400,'author','subreddit',"Year","Month","Day")
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True) df3 = df.sort(["author","subreddit","Year","Month","Day","CreatedAt","link_id","parent_id"],ascending=True)
df3.write.parquet("/gscratch/scrubbed/comdata/output/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy') df3 = df3.sortWithinPartitions(["author","subreddit","Year","Month","Day","CreatedAt","link_id","parent_id"],ascending=True)
df3.write.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy')

View File

@ -1,4 +1,6 @@
#!/usr/bin/bash #!/usr/bin/bash
source ~/.bashrc
echo $(hostname)
start_spark_cluster.sh start_spark_cluster.sh
singularity exec /gscratch/comdata/users/nathante/containers/nathante.sif spark-submit --master spark://$(hostname):7077 comments_2_parquet_part2.py spark-submit --verbose --master spark://$(hostname):43015 submissions_2_parquet_part2.py
singularity exec /gscratch/comdata/users/nathante/containers/nathante.sif stop-all.sh stop-all.sh

View File

@ -58,7 +58,7 @@ def parse_submission(post, names = None):
def parse_dump(partition): def parse_dump(partition):
N=10000 N=10000
stream = open_fileset([f"/gscratch/comdata/raw_data/reddit_dumps/submissions/{partition}"]) stream = open_fileset([f"/gscratch/comdata/raw_data/submissions/{partition}"])
rows = map(parse_submission,stream) rows = map(parse_submission,stream)
schema = pa.schema([ schema = pa.schema([
pa.field('id', pa.string(),nullable=True), pa.field('id', pa.string(),nullable=True),
@ -102,7 +102,7 @@ def parse_dump(partition):
writer.close() writer.close()
def gen_task_list(dumpdir="/gscratch/comdata/raw_data/reddit_dumps/submissions"): def gen_task_list(dumpdir="/gscratch/comdata/raw_data/submissions"):
files = list(find_dumps(dumpdir,base_pattern="RS_20*.*")) files = list(find_dumps(dumpdir,base_pattern="RS_20*.*"))
with open("submissions_task_list.sh",'w') as of: with open("submissions_task_list.sh",'w') as of:
for fpath in files: for fpath in files:

View File

@ -29,14 +29,14 @@ df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3]) df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3])
# next we gotta resort it all. # next we gotta resort it all.
df = df.repartition("subreddit") df = df.repartition(800,"subreddit","Year","Month")
df2 = df.sort(["subreddit","CreatedAt","id"],ascending=True) df2 = df.sort(["subreddit","Year","Month","CreatedAt","id"],ascending=True)
df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True) df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True)
df2.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_subreddit.parquet2", mode='overwrite',compression='snappy') df2.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_subreddit.parquet2", mode='overwrite',compression='snappy')
# # we also want to have parquet files sorted by author then reddit. # # we also want to have parquet files sorted by author then reddit.
df = df.repartition("author") df = df.repartition(800,"author","subreddit","Year","Month")
df3 = df.sort(["author","CreatedAt","id"],ascending=True) df3 = df.sort(["author","Year","Month","CreatedAt","id"],ascending=True)
df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True) df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True)
df3.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_author.parquet2", mode='overwrite',compression='snappy') df3.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_author.parquet2", mode='overwrite',compression='snappy')