changes from dirty branch.
This commit is contained in:
parent
c190791364
commit
811a0d87c4
@ -4,7 +4,7 @@ similarity_data=/gscratch/comdata/output/reddit_similarity
|
|||||||
clustering_data=/gscratch/comdata/output/reddit_clustering
|
clustering_data=/gscratch/comdata/output/reddit_clustering
|
||||||
kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000]
|
kmeans_selection_grid=--max_iters=[3000] --n_inits=[10] --n_clusters=[100,500,1000,1250,1500,1750,2000]
|
||||||
|
|
||||||
umap_hdbscan_selection_grid=--min_cluster_sizes=[2] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf] --n_neighbors=[5,15,25,50,75,100] --learning_rate=[1] --min_dist=[0,0.1,0.25,0.5,0.75,0.9,0.99] --local_connectivity=[1] --densmap=[True,False] --n_components=[2,5,10]
|
umap_hdbscan_selection_grid=--min_cluster_sizes=[2] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf] --n_neighbors=[5,15,25,50,75,100] --learning_rate=[1] --min_dist=[0,0.1,0.25,0.5,0.75,0.9,0.99] --local_connectivity=[1] --densmap=[True,False] --n_components=[2,5,10,15,25]
|
||||||
|
|
||||||
hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf]
|
hdbscan_selection_grid=--min_cluster_sizes=[2,3,4,5] --min_samples=[2,3,4,5] --cluster_selection_epsilons=[0,0.01,0.05,0.1,0.15,0.2] --cluster_selection_methods=[eom,leaf]
|
||||||
affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15]
|
affinity_selection_grid=--dampings=[0.5,0.6,0.7,0.8,0.95,0.97,0.99] --preference_quantiles=[0.1,0.3,0.5,0.7,0.9] --convergence_iters=[15]
|
||||||
|
@ -21,9 +21,9 @@ class clustering_job:
|
|||||||
self.subreddits, self.mat = self.read_distance_mat(self.infile)
|
self.subreddits, self.mat = self.read_distance_mat(self.infile)
|
||||||
self.clustering = self.call(self.mat, *self.args, **self.kwargs)
|
self.clustering = self.call(self.mat, *self.args, **self.kwargs)
|
||||||
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
|
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
|
||||||
self.score = self.silhouette()
|
|
||||||
self.outpath.mkdir(parents=True, exist_ok=True)
|
self.outpath.mkdir(parents=True, exist_ok=True)
|
||||||
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
|
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
|
||||||
|
|
||||||
self.hasrun = True
|
self.hasrun = True
|
||||||
self.cleanup()
|
self.cleanup()
|
||||||
|
|
||||||
@ -62,6 +62,7 @@ class clustering_job:
|
|||||||
else:
|
else:
|
||||||
score = None
|
score = None
|
||||||
self.silsampout = None
|
self.silsampout = None
|
||||||
|
|
||||||
return score
|
return score
|
||||||
|
|
||||||
def read_distance_mat(self, similarities, use_threads=True):
|
def read_distance_mat(self, similarities, use_threads=True):
|
||||||
@ -81,9 +82,13 @@ class clustering_job:
|
|||||||
self.n_clusters = len(set(clusters))
|
self.n_clusters = len(set(clusters))
|
||||||
|
|
||||||
print(f"found {self.n_clusters} clusters")
|
print(f"found {self.n_clusters} clusters")
|
||||||
|
|
||||||
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
|
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
|
||||||
|
|
||||||
|
|
||||||
|
self.score = self.silhouette()
|
||||||
|
print(f"silhouette_score:{self.score}")
|
||||||
|
|
||||||
|
|
||||||
cluster_sizes = cluster_data.groupby("cluster").count().reset_index()
|
cluster_sizes = cluster_data.groupby("cluster").count().reset_index()
|
||||||
print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members")
|
print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members")
|
||||||
|
|
||||||
@ -125,7 +130,7 @@ class twoway_clustering_job(clustering_job):
|
|||||||
self.after_run()
|
self.after_run()
|
||||||
self.cleanup()
|
self.cleanup()
|
||||||
|
|
||||||
def after_run():
|
def after_run(self):
|
||||||
self.score = self.silhouette()
|
self.score = self.silhouette()
|
||||||
self.outpath.mkdir(parents=True, exist_ok=True)
|
self.outpath.mkdir(parents=True, exist_ok=True)
|
||||||
print(self.outpath/(self.name+".feather"))
|
print(self.outpath/(self.name+".feather"))
|
||||||
|
@ -110,7 +110,7 @@ class umap_hdbscan_job(twoway_clustering_job):
|
|||||||
self.cluster_selection_method = hdbscan_args['cluster_selection_method']
|
self.cluster_selection_method = hdbscan_args['cluster_selection_method']
|
||||||
|
|
||||||
def after_run(self):
|
def after_run(self):
|
||||||
coords = self.step1.emedding_
|
coords = self.step1.embedding_
|
||||||
self.cluster_data['x'] = coords[:,0]
|
self.cluster_data['x'] = coords[:,0]
|
||||||
self.cluster_data['y'] = coords[:,1]
|
self.cluster_data['y'] = coords[:,1]
|
||||||
super().after_run()
|
super().after_run()
|
||||||
|
@ -9,7 +9,7 @@ from pyspark.sql import SparkSession
|
|||||||
spark = SparkSession.builder.getOrCreate()
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
|
||||||
conf = pyspark.SparkConf().setAppName("Reddit submissions to parquet")
|
conf = pyspark.SparkConf().setAppName("Reddit submissions to parquet")
|
||||||
conf = conf.set("spark.sql.shuffle.partitions",2000)
|
conf = conf.set("spark.sql.shuffle.partitions",2400)
|
||||||
conf = conf.set('spark.sql.crossJoin.enabled',"true")
|
conf = conf.set('spark.sql.crossJoin.enabled',"true")
|
||||||
conf = conf.set('spark.debug.maxToStringFields',200)
|
conf = conf.set('spark.debug.maxToStringFields',200)
|
||||||
sc = spark.sparkContext
|
sc = spark.sparkContext
|
||||||
@ -25,12 +25,13 @@ df = df.withColumn("Month",f.month(f.col("CreatedAt")))
|
|||||||
df = df.withColumn("Year",f.year(f.col("CreatedAt")))
|
df = df.withColumn("Year",f.year(f.col("CreatedAt")))
|
||||||
df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
|
df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
|
||||||
|
|
||||||
df = df.repartition('subreddit')
|
# df = df.repartition(1200,'subreddit')
|
||||||
df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
|
# df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
|
||||||
df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
|
# df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
|
||||||
df2.write.parquet("/gscratch/scrubbed/comdata/output/reddit_comments_by_subreddit.parquet", mode='overwrite', compression='snappy')
|
# df2.write.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_subreddit.parquet", mode='overwrite', compression='snappy')
|
||||||
|
|
||||||
df = df.repartition('author')
|
#df = spark.read.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_subreddit.parquet")
|
||||||
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
df = df.repartition(2400,'author','subreddit',"Year","Month","Day")
|
||||||
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
df3 = df.sort(["author","subreddit","Year","Month","Day","CreatedAt","link_id","parent_id"],ascending=True)
|
||||||
df3.write.parquet("/gscratch/scrubbed/comdata/output/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy')
|
df3 = df3.sortWithinPartitions(["author","subreddit","Year","Month","Day","CreatedAt","link_id","parent_id"],ascending=True)
|
||||||
|
df3.write.parquet("/gscratch/scrubbed/comdata/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy')
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
#!/usr/bin/bash
|
#!/usr/bin/bash
|
||||||
|
source ~/.bashrc
|
||||||
|
echo $(hostname)
|
||||||
start_spark_cluster.sh
|
start_spark_cluster.sh
|
||||||
singularity exec /gscratch/comdata/users/nathante/containers/nathante.sif spark-submit --master spark://$(hostname):7077 comments_2_parquet_part2.py
|
spark-submit --verbose --master spark://$(hostname):43015 submissions_2_parquet_part2.py
|
||||||
singularity exec /gscratch/comdata/users/nathante/containers/nathante.sif stop-all.sh
|
stop-all.sh
|
||||||
|
@ -58,7 +58,7 @@ def parse_submission(post, names = None):
|
|||||||
def parse_dump(partition):
|
def parse_dump(partition):
|
||||||
|
|
||||||
N=10000
|
N=10000
|
||||||
stream = open_fileset([f"/gscratch/comdata/raw_data/reddit_dumps/submissions/{partition}"])
|
stream = open_fileset([f"/gscratch/comdata/raw_data/submissions/{partition}"])
|
||||||
rows = map(parse_submission,stream)
|
rows = map(parse_submission,stream)
|
||||||
schema = pa.schema([
|
schema = pa.schema([
|
||||||
pa.field('id', pa.string(),nullable=True),
|
pa.field('id', pa.string(),nullable=True),
|
||||||
@ -102,7 +102,7 @@ def parse_dump(partition):
|
|||||||
|
|
||||||
writer.close()
|
writer.close()
|
||||||
|
|
||||||
def gen_task_list(dumpdir="/gscratch/comdata/raw_data/reddit_dumps/submissions"):
|
def gen_task_list(dumpdir="/gscratch/comdata/raw_data/submissions"):
|
||||||
files = list(find_dumps(dumpdir,base_pattern="RS_20*.*"))
|
files = list(find_dumps(dumpdir,base_pattern="RS_20*.*"))
|
||||||
with open("submissions_task_list.sh",'w') as of:
|
with open("submissions_task_list.sh",'w') as of:
|
||||||
for fpath in files:
|
for fpath in files:
|
||||||
|
@ -29,14 +29,14 @@ df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
|
|||||||
df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3])
|
df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3])
|
||||||
|
|
||||||
# next we gotta resort it all.
|
# next we gotta resort it all.
|
||||||
df = df.repartition("subreddit")
|
df = df.repartition(800,"subreddit","Year","Month")
|
||||||
df2 = df.sort(["subreddit","CreatedAt","id"],ascending=True)
|
df2 = df.sort(["subreddit","Year","Month","CreatedAt","id"],ascending=True)
|
||||||
df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True)
|
df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True)
|
||||||
df2.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_subreddit.parquet2", mode='overwrite',compression='snappy')
|
df2.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_subreddit.parquet2", mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
|
||||||
# # we also want to have parquet files sorted by author then reddit.
|
# # we also want to have parquet files sorted by author then reddit.
|
||||||
df = df.repartition("author")
|
df = df.repartition(800,"author","subreddit","Year","Month")
|
||||||
df3 = df.sort(["author","CreatedAt","id"],ascending=True)
|
df3 = df.sort(["author","Year","Month","CreatedAt","id"],ascending=True)
|
||||||
df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True)
|
df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True)
|
||||||
df3.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_author.parquet2", mode='overwrite',compression='snappy')
|
df3.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_author.parquet2", mode='overwrite',compression='snappy')
|
||||||
|
Loading…
Reference in New Issue
Block a user