Update code for building simlarity matrices.
This commit is contained in:
parent
e794214653
commit
82d184d9c6
@ -2,11 +2,67 @@ from pyspark.sql import Window
|
||||
from pyspark.sql import functions as f
|
||||
from enum import Enum
|
||||
from pyspark.mllib.linalg.distributed import CoordinateMatrix
|
||||
from tempfile import TemporaryDirectory
|
||||
import pyarrow
|
||||
import pyarrow.dataset as ds
|
||||
from scipy.sparse import csr_matrix
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
class tf_weight(Enum):
|
||||
MaxTF = 1
|
||||
Norm05 = 2
|
||||
|
||||
def read_tfidf_matrix(path,term_colname):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
term_id_new = term + '_id_new'
|
||||
|
||||
dataset = ds.dataset(path,format='parquet')
|
||||
entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas()
|
||||
return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
|
||||
|
||||
def column_similarities(mat):
|
||||
norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
|
||||
mat = mat.multiply(1/norm)
|
||||
sims = mat.T @ mat
|
||||
return(sims)
|
||||
|
||||
|
||||
def prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
term_id_new = term + '_id_new'
|
||||
|
||||
if min_df is None:
|
||||
min_df = 0.1 * len(included_subreddits)
|
||||
|
||||
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
|
||||
|
||||
# reset the subreddit ids
|
||||
sub_ids = tfidf.select('subreddit_id').distinct()
|
||||
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
|
||||
tfidf = tfidf.join(sub_ids,'subreddit_id')
|
||||
|
||||
# only use terms in at least min_df included subreddits
|
||||
new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
|
||||
# new_count = new_count.filter(f.col('new_count') >= min_df)
|
||||
tfidf = tfidf.join(new_count,term_id,how='inner')
|
||||
|
||||
# reset the term ids
|
||||
term_ids = tfidf.select([term_id]).distinct()
|
||||
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
|
||||
tfidf = tfidf.join(term_ids,term_id)
|
||||
|
||||
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
|
||||
# tfidf = tfidf.withColumnRenamed("idf","idf_old")
|
||||
# tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count")))
|
||||
tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
|
||||
|
||||
tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
|
||||
|
||||
tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
|
||||
return tempdir
|
||||
|
||||
def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
|
||||
term = term_colname
|
||||
|
@ -8,38 +8,23 @@ import pandas as pd
|
||||
import fire
|
||||
from itertools import islice
|
||||
from pathlib import Path
|
||||
from similarities_helper import cosine_similarities
|
||||
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
|
||||
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
|
||||
def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
|
||||
'''
|
||||
Compute similarities between subreddits based on tfi-idf vectors of comment texts
|
||||
|
||||
included_subreddits : string
|
||||
Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
|
||||
|
||||
similarity_threshold : double (default = 0)
|
||||
set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
|
||||
https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
|
||||
|
||||
min_df : int (default = 0.1 * (number of included_subreddits)
|
||||
exclude terms that appear in fewer than this number of documents.
|
||||
|
||||
outfile: string
|
||||
where to output csv and feather outputs
|
||||
'''
|
||||
from similarities_helper import cosine_similarities, prep_tfidf_entries, read_tfidf_matrix, column_similarities
|
||||
import scipy
|
||||
# outfile='test_similarities_500.feather';
|
||||
# min_df = None;
|
||||
# included_subreddits=None; topN=100; exclude_phrases=True;
|
||||
|
||||
def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
print(outfile)
|
||||
print(exclude_phrases)
|
||||
|
||||
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
||||
|
||||
if included_subreddits is None:
|
||||
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
||||
included_subreddits = {s.strip('\n') for s in included_subreddits}
|
||||
rankdf = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv")
|
||||
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
|
||||
|
||||
else:
|
||||
included_subreddits = set(open(included_subreddits))
|
||||
@ -47,7 +32,23 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get
|
||||
if exclude_phrases == True:
|
||||
tfidf = tfidf.filter(~f.col(term).contains("_"))
|
||||
|
||||
sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold)
|
||||
print("creating temporary parquet with matrix indicies")
|
||||
tempdir = prep_tfidf_entries(tfidf, 'term', min_df, included_subreddits)
|
||||
tfidf = spark.read.parquet(tempdir.name)
|
||||
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||||
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||||
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||
spark.stop()
|
||||
|
||||
print("loading matrix")
|
||||
mat = read_tfidf_matrix(tempdir.name,'term')
|
||||
print('computing similarities')
|
||||
sims = column_similarities(mat)
|
||||
del mat
|
||||
|
||||
sims = pd.DataFrame(sims.todense())
|
||||
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
|
||||
sims['subreddit'] = subreddit_names.subreddit.values
|
||||
|
||||
p = Path(outfile)
|
||||
|
||||
@ -55,25 +56,72 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get
|
||||
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||
|
||||
sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
||||
sims.to_feather(outfile)
|
||||
tempdir.cleanup()
|
||||
path = "term_tfidf_entriesaukjy5gv.parquet"
|
||||
|
||||
#instead of toLocalMatrix() why not read as entries and put strait into numpy
|
||||
sim_entries = pd.read_parquet(output_parquet)
|
||||
|
||||
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
||||
spark.stop()
|
||||
df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
||||
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
||||
df = df.set_index('subreddit_id_new')
|
||||
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
|
||||
# def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
|
||||
# '''
|
||||
# Compute similarities between subreddits based on tfi-idf vectors of comment texts
|
||||
|
||||
# included_subreddits : string
|
||||
# Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
|
||||
|
||||
similarities = sim_entries.join(df, on='i')
|
||||
similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
||||
similarities = similarities.join(df, on='j')
|
||||
similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
||||
# similarity_threshold : double (default = 0)
|
||||
# set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
|
||||
# https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
|
||||
|
||||
similarities.to_feather(output_feather)
|
||||
similarities.to_csv(output_csv)
|
||||
return similarities
|
||||
# min_df : int (default = 0.1 * (number of included_subreddits)
|
||||
# exclude terms that appear in fewer than this number of documents.
|
||||
|
||||
# outfile: string
|
||||
# where to output csv and feather outputs
|
||||
# '''
|
||||
|
||||
# print(outfile)
|
||||
# print(exclude_phrases)
|
||||
|
||||
# tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
||||
|
||||
# if included_subreddits is None:
|
||||
# included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
||||
# included_subreddits = {s.strip('\n') for s in included_subreddits}
|
||||
|
||||
# else:
|
||||
# included_subreddits = set(open(included_subreddits))
|
||||
|
||||
# if exclude_phrases == True:
|
||||
# tfidf = tfidf.filter(~f.col(term).contains("_"))
|
||||
|
||||
# sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold)
|
||||
|
||||
# p = Path(outfile)
|
||||
|
||||
# output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||
# output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||
# output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||
|
||||
# sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
||||
|
||||
# #instead of toLocalMatrix() why not read as entries and put strait into numpy
|
||||
# sim_entries = pd.read_parquet(output_parquet)
|
||||
|
||||
# df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
||||
# spark.stop()
|
||||
# df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
||||
# df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
||||
# df = df.set_index('subreddit_id_new')
|
||||
|
||||
# similarities = sim_entries.join(df, on='i')
|
||||
# similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
||||
# similarities = similarities.join(df, on='j')
|
||||
# similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
||||
|
||||
# similarities.to_feather(output_feather)
|
||||
# similarities.to_csv(output_csv)
|
||||
# return similarities
|
||||
|
||||
if __name__ == '__main__':
|
||||
fire.Fire(term_cosine_similarities)
|
||||
|
30
top_subreddits_by_comments.py
Normal file
30
top_subreddits_by_comments.py
Normal file
@ -0,0 +1,30 @@
|
||||
from pyspark.sql import functions as f
|
||||
from pyspark.sql import SparkSession
|
||||
from pyspark.sql import Window
|
||||
from pyspark.mllib.linalg.distributed import RowMatrix, CoordinateMatrix
|
||||
import numpy as np
|
||||
import pyarrow
|
||||
import pandas as pd
|
||||
import fire
|
||||
from itertools import islice
|
||||
from pathlib import Path
|
||||
from similarities_helper import cosine_similarities
|
||||
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
|
||||
df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet")
|
||||
|
||||
# remove /u/ pages
|
||||
df = df.filter(~df.subreddit.like("u_%"))
|
||||
|
||||
df = df.groupBy('subreddit').agg(f.count('id').alias("n_comments"))
|
||||
|
||||
win = Window.orderBy(f.col('n_comments').desc())
|
||||
df = df.withColumn('comments_rank',f.rank().over(win))
|
||||
|
||||
df = df.toPandas()
|
||||
|
||||
df = df.sort_values("n_comments")
|
||||
|
||||
df.to_csv('/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv',index=False)
|
Loading…
Reference in New Issue
Block a user