Update code for building simlarity matrices.
This commit is contained in:
parent
e794214653
commit
82d184d9c6
@ -2,11 +2,67 @@ from pyspark.sql import Window
|
|||||||
from pyspark.sql import functions as f
|
from pyspark.sql import functions as f
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from pyspark.mllib.linalg.distributed import CoordinateMatrix
|
from pyspark.mllib.linalg.distributed import CoordinateMatrix
|
||||||
|
from tempfile import TemporaryDirectory
|
||||||
|
import pyarrow
|
||||||
|
import pyarrow.dataset as ds
|
||||||
|
from scipy.sparse import csr_matrix
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
class tf_weight(Enum):
|
class tf_weight(Enum):
|
||||||
MaxTF = 1
|
MaxTF = 1
|
||||||
Norm05 = 2
|
Norm05 = 2
|
||||||
|
|
||||||
|
def read_tfidf_matrix(path,term_colname):
|
||||||
|
term = term_colname
|
||||||
|
term_id = term + '_id'
|
||||||
|
term_id_new = term + '_id_new'
|
||||||
|
|
||||||
|
dataset = ds.dataset(path,format='parquet')
|
||||||
|
entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas()
|
||||||
|
return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
|
||||||
|
|
||||||
|
def column_similarities(mat):
|
||||||
|
norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
|
||||||
|
mat = mat.multiply(1/norm)
|
||||||
|
sims = mat.T @ mat
|
||||||
|
return(sims)
|
||||||
|
|
||||||
|
|
||||||
|
def prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits):
|
||||||
|
term = term_colname
|
||||||
|
term_id = term + '_id'
|
||||||
|
term_id_new = term + '_id_new'
|
||||||
|
|
||||||
|
if min_df is None:
|
||||||
|
min_df = 0.1 * len(included_subreddits)
|
||||||
|
|
||||||
|
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
|
||||||
|
|
||||||
|
# reset the subreddit ids
|
||||||
|
sub_ids = tfidf.select('subreddit_id').distinct()
|
||||||
|
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
|
||||||
|
tfidf = tfidf.join(sub_ids,'subreddit_id')
|
||||||
|
|
||||||
|
# only use terms in at least min_df included subreddits
|
||||||
|
new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
|
||||||
|
# new_count = new_count.filter(f.col('new_count') >= min_df)
|
||||||
|
tfidf = tfidf.join(new_count,term_id,how='inner')
|
||||||
|
|
||||||
|
# reset the term ids
|
||||||
|
term_ids = tfidf.select([term_id]).distinct()
|
||||||
|
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
|
||||||
|
tfidf = tfidf.join(term_ids,term_id)
|
||||||
|
|
||||||
|
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
|
||||||
|
# tfidf = tfidf.withColumnRenamed("idf","idf_old")
|
||||||
|
# tfidf = tfidf.withColumn("idf",f.log(25000/f.col("count")))
|
||||||
|
tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
|
||||||
|
|
||||||
|
tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
|
||||||
|
|
||||||
|
tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
|
||||||
|
return tempdir
|
||||||
|
|
||||||
def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
|
def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
|
||||||
term = term_colname
|
term = term_colname
|
||||||
|
@ -8,38 +8,23 @@ import pandas as pd
|
|||||||
import fire
|
import fire
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from similarities_helper import cosine_similarities
|
from similarities_helper import cosine_similarities, prep_tfidf_entries, read_tfidf_matrix, column_similarities
|
||||||
|
import scipy
|
||||||
|
# outfile='test_similarities_500.feather';
|
||||||
|
# min_df = None;
|
||||||
|
# included_subreddits=None; topN=100; exclude_phrases=True;
|
||||||
|
|
||||||
|
def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||||||
spark = SparkSession.builder.getOrCreate()
|
spark = SparkSession.builder.getOrCreate()
|
||||||
conf = spark.sparkContext.getConf()
|
conf = spark.sparkContext.getConf()
|
||||||
|
|
||||||
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
|
|
||||||
def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
|
|
||||||
'''
|
|
||||||
Compute similarities between subreddits based on tfi-idf vectors of comment texts
|
|
||||||
|
|
||||||
included_subreddits : string
|
|
||||||
Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
|
|
||||||
|
|
||||||
similarity_threshold : double (default = 0)
|
|
||||||
set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
|
|
||||||
https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
|
|
||||||
|
|
||||||
min_df : int (default = 0.1 * (number of included_subreddits)
|
|
||||||
exclude terms that appear in fewer than this number of documents.
|
|
||||||
|
|
||||||
outfile: string
|
|
||||||
where to output csv and feather outputs
|
|
||||||
'''
|
|
||||||
|
|
||||||
print(outfile)
|
print(outfile)
|
||||||
print(exclude_phrases)
|
print(exclude_phrases)
|
||||||
|
|
||||||
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
||||||
|
|
||||||
if included_subreddits is None:
|
if included_subreddits is None:
|
||||||
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
rankdf = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv")
|
||||||
included_subreddits = {s.strip('\n') for s in included_subreddits}
|
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
included_subreddits = set(open(included_subreddits))
|
included_subreddits = set(open(included_subreddits))
|
||||||
@ -47,7 +32,23 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get
|
|||||||
if exclude_phrases == True:
|
if exclude_phrases == True:
|
||||||
tfidf = tfidf.filter(~f.col(term).contains("_"))
|
tfidf = tfidf.filter(~f.col(term).contains("_"))
|
||||||
|
|
||||||
sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold)
|
print("creating temporary parquet with matrix indicies")
|
||||||
|
tempdir = prep_tfidf_entries(tfidf, 'term', min_df, included_subreddits)
|
||||||
|
tfidf = spark.read.parquet(tempdir.name)
|
||||||
|
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||||||
|
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||||||
|
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||||
|
spark.stop()
|
||||||
|
|
||||||
|
print("loading matrix")
|
||||||
|
mat = read_tfidf_matrix(tempdir.name,'term')
|
||||||
|
print('computing similarities')
|
||||||
|
sims = column_similarities(mat)
|
||||||
|
del mat
|
||||||
|
|
||||||
|
sims = pd.DataFrame(sims.todense())
|
||||||
|
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
|
||||||
|
sims['subreddit'] = subreddit_names.subreddit.values
|
||||||
|
|
||||||
p = Path(outfile)
|
p = Path(outfile)
|
||||||
|
|
||||||
@ -55,25 +56,72 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get
|
|||||||
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||||
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||||
|
|
||||||
sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
sims.to_feather(outfile)
|
||||||
|
tempdir.cleanup()
|
||||||
|
path = "term_tfidf_entriesaukjy5gv.parquet"
|
||||||
|
|
||||||
#instead of toLocalMatrix() why not read as entries and put strait into numpy
|
|
||||||
sim_entries = pd.read_parquet(output_parquet)
|
|
||||||
|
|
||||||
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
|
||||||
spark.stop()
|
# def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
|
||||||
df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
# '''
|
||||||
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
# Compute similarities between subreddits based on tfi-idf vectors of comment texts
|
||||||
df = df.set_index('subreddit_id_new')
|
|
||||||
|
|
||||||
similarities = sim_entries.join(df, on='i')
|
# included_subreddits : string
|
||||||
similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
# Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
|
||||||
similarities = similarities.join(df, on='j')
|
|
||||||
similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
|
||||||
|
|
||||||
similarities.to_feather(output_feather)
|
# similarity_threshold : double (default = 0)
|
||||||
similarities.to_csv(output_csv)
|
# set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
|
||||||
return similarities
|
# https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
|
||||||
|
|
||||||
|
# min_df : int (default = 0.1 * (number of included_subreddits)
|
||||||
|
# exclude terms that appear in fewer than this number of documents.
|
||||||
|
|
||||||
|
# outfile: string
|
||||||
|
# where to output csv and feather outputs
|
||||||
|
# '''
|
||||||
|
|
||||||
|
# print(outfile)
|
||||||
|
# print(exclude_phrases)
|
||||||
|
|
||||||
|
# tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
||||||
|
|
||||||
|
# if included_subreddits is None:
|
||||||
|
# included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
||||||
|
# included_subreddits = {s.strip('\n') for s in included_subreddits}
|
||||||
|
|
||||||
|
# else:
|
||||||
|
# included_subreddits = set(open(included_subreddits))
|
||||||
|
|
||||||
|
# if exclude_phrases == True:
|
||||||
|
# tfidf = tfidf.filter(~f.col(term).contains("_"))
|
||||||
|
|
||||||
|
# sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold)
|
||||||
|
|
||||||
|
# p = Path(outfile)
|
||||||
|
|
||||||
|
# output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||||
|
# output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||||
|
# output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||||
|
|
||||||
|
# sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
# #instead of toLocalMatrix() why not read as entries and put strait into numpy
|
||||||
|
# sim_entries = pd.read_parquet(output_parquet)
|
||||||
|
|
||||||
|
# df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
||||||
|
# spark.stop()
|
||||||
|
# df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
||||||
|
# df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
||||||
|
# df = df.set_index('subreddit_id_new')
|
||||||
|
|
||||||
|
# similarities = sim_entries.join(df, on='i')
|
||||||
|
# similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
||||||
|
# similarities = similarities.join(df, on='j')
|
||||||
|
# similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
||||||
|
|
||||||
|
# similarities.to_feather(output_feather)
|
||||||
|
# similarities.to_csv(output_csv)
|
||||||
|
# return similarities
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
fire.Fire(term_cosine_similarities)
|
fire.Fire(term_cosine_similarities)
|
||||||
|
30
top_subreddits_by_comments.py
Normal file
30
top_subreddits_by_comments.py
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
from pyspark.sql import functions as f
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
from pyspark.sql import Window
|
||||||
|
from pyspark.mllib.linalg.distributed import RowMatrix, CoordinateMatrix
|
||||||
|
import numpy as np
|
||||||
|
import pyarrow
|
||||||
|
import pandas as pd
|
||||||
|
import fire
|
||||||
|
from itertools import islice
|
||||||
|
from pathlib import Path
|
||||||
|
from similarities_helper import cosine_similarities
|
||||||
|
|
||||||
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
conf = spark.sparkContext.getConf()
|
||||||
|
|
||||||
|
df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet")
|
||||||
|
|
||||||
|
# remove /u/ pages
|
||||||
|
df = df.filter(~df.subreddit.like("u_%"))
|
||||||
|
|
||||||
|
df = df.groupBy('subreddit').agg(f.count('id').alias("n_comments"))
|
||||||
|
|
||||||
|
win = Window.orderBy(f.col('n_comments').desc())
|
||||||
|
df = df.withColumn('comments_rank',f.rank().over(win))
|
||||||
|
|
||||||
|
df = df.toPandas()
|
||||||
|
|
||||||
|
df = df.sort_values("n_comments")
|
||||||
|
|
||||||
|
df.to_csv('/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv',index=False)
|
Loading…
Reference in New Issue
Block a user