13
0

script for picking the best clustering given constraints

This commit is contained in:
Nate E TeBlunthuis 2021-05-14 19:10:36 -07:00
parent 7b14db67de
commit 87ffaa6858

View File

@ -0,0 +1,29 @@
import fire
import pandas as pd
from pathlib import Path
import shutil
selection_data="/gscratch/comdata/output/reddit_clustering/subreddit_comment_authors-tf_10k_LSI/affinity/selection_data.csv"
outpath = 'test_best.feather'
# pick the best clustering according to silhouette score subject to contraints
def pick_best_clustering(selection_data, output, min_clusters, max_isolates):
df = pd.read_csv(selection_data,index_col=0)
df = df.sort_values("silhouette_score")
# not sure I fixed the bug underlying this fully or not.
df['n_isolates_str'] = df.n_isolates.str.strip("[]")
df['n_isolates_0'] = df['n_isolates_str'].apply(lambda l: len(l) == 0)
df.loc[df.n_isolates_0,'n_isolates'] = 0
df.loc[~df.n_isolates_0,'n_isolates'] = df.loc[~df.n_isolates_0].n_isolates_str.apply(lambda l: int(l))
best_cluster = df[(df.n_isolates <= max_isolates)&(df.n_clusters >= min_clusters)].iloc[df.shape[1]]
print(best_cluster.to_dict())
best_path = Path(best_cluster.outpath) / (str(best_cluster['name']) + ".feather")
shutil.copy(best_path,output)
if __name__ == "__main__":
fire.Fire(pick_best_clustering)