Merge branch 'master' of code:cdsc_reddit into master
This commit is contained in:
commit
9075a8153c
4
check_comments_shas.py
Normal file → Executable file
4
check_comments_shas.py
Normal file → Executable file
@ -5,8 +5,10 @@ import requests
|
|||||||
from os import path
|
from os import path
|
||||||
import hashlib
|
import hashlib
|
||||||
|
|
||||||
shasums = requests.get("https://files.pushshift.io/reddit/comments/sha256sums.txt").text
|
shasums1 = requests.get("https://files.pushshift.io/reddit/comments/sha256sum.txt").text
|
||||||
|
shasums2 = requests.get("https://files.pushshift.io/reddit/comments/daily/sha256sum.txt").text
|
||||||
|
|
||||||
|
shasums = shasums1 + shasums2
|
||||||
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments"
|
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments"
|
||||||
|
|
||||||
for l in shasums.strip().split('\n'):
|
for l in shasums.strip().split('\n'):
|
||||||
|
22
checkpoint_parallelsql.sbatch
Normal file
22
checkpoint_parallelsql.sbatch
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
## parallel_sql_job.sh
|
||||||
|
#SBATCH --job-name=tf_subreddit_comments
|
||||||
|
## Allocation Definition
|
||||||
|
#SBATCH --account=comdata-ckpt
|
||||||
|
#SBATCH --partition=ckpt
|
||||||
|
## Resources
|
||||||
|
## Nodes. This should always be 1 for parallel-sql.
|
||||||
|
#SBATCH --nodes=1
|
||||||
|
## Walltime (12 hours)
|
||||||
|
#SBATCH --time=12:00:00
|
||||||
|
## Memory per node
|
||||||
|
#SBATCH --mem=32G
|
||||||
|
#SBATCH --cpus-per-task=4
|
||||||
|
#SBATCH --ntasks=1
|
||||||
|
module load parallel_sql
|
||||||
|
|
||||||
|
#Put here commands to load other modules (e.g. matlab etc.)
|
||||||
|
#Below command means that parallel_sql will get tasks from the database
|
||||||
|
#and run them on the node (in parallel). So a 16 core node will have
|
||||||
|
#16 tasks running at one time.
|
||||||
|
parallel-sql --sql -a parallel --exit-on-term --jobs 4
|
@ -1,5 +1,6 @@
|
|||||||
#!/usr/bin/env bash
|
## needs to be run by hand since i don't have a nice way of waiting on a parallel-sql job to complete
|
||||||
|
|
||||||
|
#!/usr/bin/env bash
|
||||||
echo "#!/usr/bin/bash" > job_script.sh
|
echo "#!/usr/bin/bash" > job_script.sh
|
||||||
echo "source $(pwd)/../bin/activate" >> job_script.sh
|
echo "source $(pwd)/../bin/activate" >> job_script.sh
|
||||||
echo "python3 $(pwd)/comments_2_parquet_part1.py" >> job_script.sh
|
echo "python3 $(pwd)/comments_2_parquet_part1.py" >> job_script.sh
|
||||||
|
@ -26,4 +26,4 @@ df2.write.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet
|
|||||||
df = df.repartition('author')
|
df = df.repartition('author')
|
||||||
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
||||||
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
||||||
df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", mode='overwrite')
|
df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy')
|
||||||
|
@ -40,6 +40,8 @@ def open_input_file(input_filename):
|
|||||||
cmd = ["xzcat",'-dk', '-T 20',input_filename]
|
cmd = ["xzcat",'-dk', '-T 20',input_filename]
|
||||||
elif re.match(r'.*\.zst',input_filename):
|
elif re.match(r'.*\.zst',input_filename):
|
||||||
cmd = ['zstd','-dck', input_filename]
|
cmd = ['zstd','-dck', input_filename]
|
||||||
|
elif re.match(r'.*\.gz',input_filename):
|
||||||
|
cmd = ['gzip','-dc', input_filename]
|
||||||
try:
|
try:
|
||||||
input_file = Popen(cmd, stdout=PIPE).stdout
|
input_file = Popen(cmd, stdout=PIPE).stdout
|
||||||
except NameError as e:
|
except NameError as e:
|
||||||
|
43
idf_authors.py
Normal file
43
idf_authors.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
from pyspark.sql import functions as f
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
|
||||||
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
|
||||||
|
|
||||||
|
max_subreddit_week_authors = df.groupby(['subreddit','week']).max('tf')
|
||||||
|
max_subreddit_week_authors = max_subreddit_week_authors.withColumnRenamed('max(tf)','sr_week_max_tf')
|
||||||
|
|
||||||
|
df = df.join(max_subreddit_week_authors, ['subreddit','week'])
|
||||||
|
|
||||||
|
df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf)
|
||||||
|
|
||||||
|
# group by term / week
|
||||||
|
idf = df.groupby(['author','week']).count()
|
||||||
|
|
||||||
|
idf = idf.withColumnRenamed('count','idf')
|
||||||
|
|
||||||
|
# output: term | week | df
|
||||||
|
#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
# collect the dictionary to make a pydict of terms to indexes
|
||||||
|
authors = idf.select('author').distinct()
|
||||||
|
authors = authors.withColumn('author_id',f.monotonically_increasing_id())
|
||||||
|
|
||||||
|
|
||||||
|
# map terms to indexes in the tfs and the idfs
|
||||||
|
df = df.join(terms,on='author')
|
||||||
|
|
||||||
|
idf = idf.join(terms,on='author')
|
||||||
|
|
||||||
|
# join on subreddit/term/week to create tf/dfs indexed by term
|
||||||
|
df = df.join(idf, on=['author_id','week','author'])
|
||||||
|
|
||||||
|
# agg terms by subreddit to make sparse tf/df vectors
|
||||||
|
df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf)
|
||||||
|
|
||||||
|
df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps'))
|
||||||
|
|
||||||
|
df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
|
||||||
|
|
||||||
|
# output: subreddit | week | tf/df
|
||||||
|
df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf_authors.parquet',mode='overwrite',compression='snappy')
|
58
idf_comments.py
Normal file
58
idf_comments.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
from pyspark.sql import functions as f
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
|
||||||
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp")
|
||||||
|
|
||||||
|
max_subreddit_week_terms = df.groupby(['subreddit','week']).max('tf')
|
||||||
|
max_subreddit_week_terms = max_subreddit_week_terms.withColumnRenamed('max(tf)','sr_week_max_tf')
|
||||||
|
|
||||||
|
df = df.join(max_subreddit_week_terms, ['subreddit','week'])
|
||||||
|
|
||||||
|
df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf)
|
||||||
|
|
||||||
|
# group by term / week
|
||||||
|
idf = df.groupby(['term','week']).count()
|
||||||
|
|
||||||
|
idf = idf.withColumnRenamed('count','idf')
|
||||||
|
|
||||||
|
# output: term | week | df
|
||||||
|
#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
# collect the dictionary to make a pydict of terms to indexes
|
||||||
|
terms = idf.select('term').distinct()
|
||||||
|
terms = terms.withColumn('term_id',f.monotonically_increasing_id())
|
||||||
|
|
||||||
|
|
||||||
|
# print('collected terms')
|
||||||
|
|
||||||
|
# terms = [t.term for t in terms]
|
||||||
|
# NTerms = len(terms)
|
||||||
|
# term_id_map = {term:i for i,term in enumerate(sorted(terms))}
|
||||||
|
|
||||||
|
# term_id_map = spark.sparkContext.broadcast(term_id_map)
|
||||||
|
|
||||||
|
# print('term_id_map is broadcasted')
|
||||||
|
|
||||||
|
# def map_term(x):
|
||||||
|
# return term_id_map.value[x]
|
||||||
|
|
||||||
|
# map_term_udf = f.udf(map_term)
|
||||||
|
|
||||||
|
# map terms to indexes in the tfs and the idfs
|
||||||
|
df = df.join(terms,on='term')
|
||||||
|
|
||||||
|
idf = idf.join(terms,on='term')
|
||||||
|
|
||||||
|
# join on subreddit/term/week to create tf/dfs indexed by term
|
||||||
|
df = df.join(idf, on=['term_id','week','term'])
|
||||||
|
|
||||||
|
# agg terms by subreddit to make sparse tf/df vectors
|
||||||
|
df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf)
|
||||||
|
|
||||||
|
df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps'))
|
||||||
|
|
||||||
|
df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
|
||||||
|
|
||||||
|
# output: subreddit | week | tf/df
|
||||||
|
df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf.parquet',mode='overwrite',compression='snappy')
|
@ -4,8 +4,11 @@ user_agent='nathante teblunthuis <nathante@uw.edu>'
|
|||||||
output_dir='/gscratch/comdata/raw_data/reddit_dumps/comments'
|
output_dir='/gscratch/comdata/raw_data/reddit_dumps/comments'
|
||||||
base_url='https://files.pushshift.io/reddit/comments/'
|
base_url='https://files.pushshift.io/reddit/comments/'
|
||||||
|
|
||||||
wget -r --no-parent -A 'RC_20*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url
|
wget -r --no-parent -A 'RC_201*.bz2' -U $user_agent -P $output_dir -nd -nc $base_url
|
||||||
wget -r --no-parent -A 'RC_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url
|
wget -r --no-parent -A 'RC_201*.xz' -U $user_agent -P $output_dir -nd -nc $base_url
|
||||||
wget -r --no-parent -A 'RC_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url
|
wget -r --no-parent -A 'RC_201*.zst' -U $user_agent -P $output_dir -nd -nc $base_url
|
||||||
|
|
||||||
./check_comment_shas.py
|
# starting in 2020 we use daily dumps not monthly dumps
|
||||||
|
wget -r --no-parent -A 'RC_202*.gz' -U $user_agent -P $output_dir -nd -nc $base_url/daily/
|
||||||
|
|
||||||
|
./check_comments_shas.py
|
||||||
|
@ -11,4 +11,4 @@ wget -r --no-parent -A 'RS_20*.bz2' -U $user_agent -P $output_dir -nd -nc $base_
|
|||||||
wget -r --no-parent -A 'RS_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
|
wget -r --no-parent -A 'RS_20*.xz' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
|
||||||
wget -r --no-parent -A 'RS_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
|
wget -r --no-parent -A 'RS_20*.zst' -U $user_agent -P $output_dir -nd -nc $base_url/old_v1_data/
|
||||||
|
|
||||||
./check_submissions_shas.py
|
./check_submission_shas.py
|
||||||
|
8
run_tf_jobs.sh
Executable file
8
run_tf_jobs.sh
Executable file
@ -0,0 +1,8 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
module load parallel_sql
|
||||||
|
source ./bin/activate
|
||||||
|
python3 tf_comments.py gen_task_list
|
||||||
|
psu --del --Y
|
||||||
|
cat tf_task_list | psu --load
|
||||||
|
|
||||||
|
for job in $(seq 1 50); do sbatch checkpoint_parallelsql.sbatch; done;
|
13
sort_tf_comments.py
Normal file
13
sort_tf_comments.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
from pyspark.sql import functions as f
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
|
||||||
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/")
|
||||||
|
|
||||||
|
df = df.repartition(2000,'term')
|
||||||
|
df = df.sort(['term','week','subreddit'])
|
||||||
|
df = df.sortWithinPartitions(['term','week','subreddit'])
|
||||||
|
|
||||||
|
df.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
|
@ -1,10 +1,8 @@
|
|||||||
|
## this should be run manually since we don't have a nice way to wait on parallel_sql jobs
|
||||||
|
|
||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
echo "!#/usr/bin/bash" > job_script.sh
|
./parse_submissions.sh
|
||||||
echo "source $(pwd)/../bin/activate" >> job_script.sh
|
|
||||||
echo "python3 $(pwd)/submissions_2_parquet_part1.py" >> job_script.sh
|
|
||||||
|
|
||||||
srun -p comdata -A comdata --nodes=1 --mem=120G --time=48:00:00 job_script.sh
|
|
||||||
|
|
||||||
start_spark_and_run.sh 1 $(pwd)/submissions_2_parquet_part2.py
|
start_spark_and_run.sh 1 $(pwd)/submissions_2_parquet_part2.py
|
||||||
|
|
||||||
|
@ -4,7 +4,6 @@
|
|||||||
# 1. from gz to arrow parquet (this script)
|
# 1. from gz to arrow parquet (this script)
|
||||||
# 2. from arrow parquet to spark parquet (submissions_2_parquet_part2.py)
|
# 2. from arrow parquet to spark parquet (submissions_2_parquet_part2.py)
|
||||||
|
|
||||||
import json
|
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from multiprocessing import Pool
|
from multiprocessing import Pool
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
@ -12,19 +11,23 @@ from helper import find_dumps, open_fileset
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
import pyarrow.parquet as pq
|
import pyarrow.parquet as pq
|
||||||
|
import simdjson
|
||||||
|
import fire
|
||||||
|
import os
|
||||||
|
|
||||||
|
parser = simdjson.Parser()
|
||||||
|
|
||||||
def parse_submission(post, names = None):
|
def parse_submission(post, names = None):
|
||||||
if names is None:
|
if names is None:
|
||||||
names = ['id','author','subreddit','title','created_utc','permalink','url','domain','score','ups','downs','over_18','has_media','selftext','retrieved_on','num_comments','gilded','edited','time_edited','subreddit_type','subreddit_id','subreddit_subscribers','name','is_self','stickied','quarantine','error']
|
names = ['id','author','subreddit','title','created_utc','permalink','url','domain','score','ups','downs','over_18','has_media','selftext','retrieved_on','num_comments','gilded','edited','time_edited','subreddit_type','subreddit_id','subreddit_subscribers','name','is_self','stickied','quarantine','error']
|
||||||
|
|
||||||
try:
|
try:
|
||||||
post = json.loads(post)
|
post = parser.parse(post)
|
||||||
except (json.decoder.JSONDecodeError, UnicodeDecodeError) as e:
|
except (ValueError) as e:
|
||||||
# print(e)
|
# print(e)
|
||||||
# print(post)
|
# print(post)
|
||||||
row = [None for _ in names]
|
row = [None for _ in names]
|
||||||
row[-1] = "json.decoder.JSONDecodeError|{0}|{1}".format(e,post)
|
row[-1] = "Error parsing json|{0}|{1}".format(e,post)
|
||||||
return tuple(row)
|
return tuple(row)
|
||||||
|
|
||||||
row = []
|
row = []
|
||||||
@ -55,55 +58,61 @@ def parse_submission(post, names = None):
|
|||||||
row.append(post[name])
|
row.append(post[name])
|
||||||
return tuple(row)
|
return tuple(row)
|
||||||
|
|
||||||
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/submissions"
|
def parse_dump(partition):
|
||||||
|
|
||||||
files = list(find_dumps(dumpdir))
|
N=10000
|
||||||
|
stream = open_fileset([f"/gscratch/comdata/raw_data/reddit_dumps/submissions/{partition}"])
|
||||||
|
rows = map(parse_submission,stream)
|
||||||
|
schema = pa.schema([
|
||||||
|
pa.field('id', pa.string(),nullable=True),
|
||||||
|
pa.field('author', pa.string(),nullable=True),
|
||||||
|
pa.field('subreddit', pa.string(),nullable=True),
|
||||||
|
pa.field('title', pa.string(),nullable=True),
|
||||||
|
pa.field('created_utc', pa.timestamp('ms'),nullable=True),
|
||||||
|
pa.field('permalink', pa.string(),nullable=True),
|
||||||
|
pa.field('url', pa.string(),nullable=True),
|
||||||
|
pa.field('domain', pa.string(),nullable=True),
|
||||||
|
pa.field('score', pa.int64(),nullable=True),
|
||||||
|
pa.field('ups', pa.int64(),nullable=True),
|
||||||
|
pa.field('downs', pa.int64(),nullable=True),
|
||||||
|
pa.field('over_18', pa.bool_(),nullable=True),
|
||||||
|
pa.field('has_media',pa.bool_(),nullable=True),
|
||||||
|
pa.field('selftext',pa.string(),nullable=True),
|
||||||
|
pa.field('retrieved_on', pa.timestamp('ms'),nullable=True),
|
||||||
|
pa.field('num_comments', pa.int64(),nullable=True),
|
||||||
|
pa.field('gilded',pa.int64(),nullable=True),
|
||||||
|
pa.field('edited',pa.bool_(),nullable=True),
|
||||||
|
pa.field('time_edited',pa.timestamp('ms'),nullable=True),
|
||||||
|
pa.field('subreddit_type',pa.string(),nullable=True),
|
||||||
|
pa.field('subreddit_id',pa.string(),nullable=True),
|
||||||
|
pa.field('subreddit_subscribers',pa.int64(),nullable=True),
|
||||||
|
pa.field('name',pa.string(),nullable=True),
|
||||||
|
pa.field('is_self',pa.bool_(),nullable=True),
|
||||||
|
pa.field('stickied',pa.bool_(),nullable=True),
|
||||||
|
pa.field('quarantine',pa.bool_(),nullable=True),
|
||||||
|
pa.field('error',pa.string(),nullable=True)])
|
||||||
|
|
||||||
pool = Pool(28)
|
if not os.path.exists("/gscratch/comdata/output/temp/reddit_submissions.parquet/"):
|
||||||
|
os.mkdir("/gscratch/comdata/output/temp/reddit_submissions.parquet/")
|
||||||
|
|
||||||
stream = open_fileset(files)
|
with pq.ParquetWriter(f"/gscratch/comdata/output/temp/reddit_submissions.parquet/{partition}",schema=schema,compression='snappy',flavor='spark') as writer:
|
||||||
|
while True:
|
||||||
|
chunk = islice(rows,N)
|
||||||
|
pddf = pd.DataFrame(chunk, columns=schema.names)
|
||||||
|
table = pa.Table.from_pandas(pddf,schema=schema)
|
||||||
|
if table.shape[0] == 0:
|
||||||
|
break
|
||||||
|
writer.write_table(table)
|
||||||
|
|
||||||
N = 100000
|
writer.close()
|
||||||
|
|
||||||
rows = pool.imap_unordered(parse_submission, stream, chunksize=int(N/28))
|
def gen_task_list(dumpdir="/gscratch/comdata/raw_data/reddit_dumps/submissions"):
|
||||||
|
files = list(find_dumps(dumpdir,base_pattern="RS_20*.*"))
|
||||||
schema = pa.schema([
|
with open("parse_submissions_task_list",'w') as of:
|
||||||
pa.field('id', pa.string(),nullable=True),
|
for fpath in files:
|
||||||
pa.field('author', pa.string(),nullable=True),
|
partition = os.path.split(fpath)[1]
|
||||||
pa.field('subreddit', pa.string(),nullable=True),
|
of.write(f'python3 submissions_2_parquet_part1.py parse_dump {partition}\n')
|
||||||
pa.field('title', pa.string(),nullable=True),
|
|
||||||
pa.field('created_utc', pa.timestamp('ms'),nullable=True),
|
|
||||||
pa.field('permalink', pa.string(),nullable=True),
|
|
||||||
pa.field('url', pa.string(),nullable=True),
|
|
||||||
pa.field('domain', pa.string(),nullable=True),
|
|
||||||
pa.field('score', pa.int64(),nullable=True),
|
|
||||||
pa.field('ups', pa.int64(),nullable=True),
|
|
||||||
pa.field('downs', pa.int64(),nullable=True),
|
|
||||||
pa.field('over_18', pa.bool_(),nullable=True),
|
|
||||||
pa.field('has_media',pa.bool_(),nullable=True),
|
|
||||||
pa.field('selftext',pa.string(),nullable=True),
|
|
||||||
pa.field('retrieved_on', pa.timestamp('ms'),nullable=True),
|
|
||||||
pa.field('num_comments', pa.int64(),nullable=True),
|
|
||||||
pa.field('gilded',pa.int64(),nullable=True),
|
|
||||||
pa.field('edited',pa.bool_(),nullable=True),
|
|
||||||
pa.field('time_edited',pa.timestamp('ms'),nullable=True),
|
|
||||||
pa.field('subreddit_type',pa.string(),nullable=True),
|
|
||||||
pa.field('subreddit_id',pa.string(),nullable=True),
|
|
||||||
pa.field('subreddit_subscribers',pa.int64(),nullable=True),
|
|
||||||
pa.field('name',pa.string(),nullable=True),
|
|
||||||
pa.field('is_self',pa.bool_(),nullable=True),
|
|
||||||
pa.field('stickied',pa.bool_(),nullable=True),
|
|
||||||
pa.field('quarantine',pa.bool_(),nullable=True),
|
|
||||||
pa.field('error',pa.string(),nullable=True)])
|
|
||||||
|
|
||||||
with pq.ParquetWriter("/gscratch/comdata/output/reddit_submissions.parquet_temp",schema=schema,compression='snappy',flavor='spark') as writer:
|
|
||||||
while True:
|
|
||||||
chunk = islice(rows,N)
|
|
||||||
pddf = pd.DataFrame(chunk, columns=schema.names)
|
|
||||||
table = pa.Table.from_pandas(pddf,schema=schema)
|
|
||||||
if table.shape[0] == 0:
|
|
||||||
break
|
|
||||||
writer.write_table(table)
|
|
||||||
|
|
||||||
writer.close()
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire({'parse_dump':parse_dump,
|
||||||
|
'gen_task_list':gen_task_list})
|
||||||
|
@ -17,7 +17,7 @@ conf = conf.set('spark.sql.crossJoin.enabled',"true")
|
|||||||
conf = conf.set('spark.debug.maxToStringFields',200)
|
conf = conf.set('spark.debug.maxToStringFields',200)
|
||||||
sqlContext = pyspark.SQLContext(sc)
|
sqlContext = pyspark.SQLContext(sc)
|
||||||
|
|
||||||
df = spark.read.parquet("/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet")
|
df = spark.read.parquet("/gscratch/comdata/output/temp/reddit_submissions.parquet/")
|
||||||
|
|
||||||
df = df.withColumn("subreddit_2", f.lower(f.col('subreddit')))
|
df = df.withColumn("subreddit_2", f.lower(f.col('subreddit')))
|
||||||
df = df.drop('subreddit')
|
df = df.drop('subreddit')
|
||||||
@ -32,13 +32,11 @@ df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3])
|
|||||||
df = df.repartition("subreddit")
|
df = df.repartition("subreddit")
|
||||||
df2 = df.sort(["subreddit","CreatedAt","id"],ascending=True)
|
df2 = df.sort(["subreddit","CreatedAt","id"],ascending=True)
|
||||||
df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True)
|
df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True)
|
||||||
df2.write.parquet("/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet2", mode='overwrite',compression='snappy')
|
df2.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_subreddit.parquet2", mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
|
||||||
# # we also want to have parquet files sorted by author then reddit.
|
# # we also want to have parquet files sorted by author then reddit.
|
||||||
df = df.repartition("author")
|
df = df.repartition("author")
|
||||||
df3 = df.sort(["author","CreatedAt","id"],ascending=True)
|
df3 = df.sort(["author","CreatedAt","id"],ascending=True)
|
||||||
df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True)
|
df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True)
|
||||||
df3.write.parquet("/gscratch/comdata/output/reddit_submissions_by_author.parquet2", mode='overwrite',compression='snappy')
|
df3.write.parquet("/gscratch/comdata/output/temp/reddit_submissions_by_author.parquet2", mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
os.remove("/gscratch/comdata/output/reddit_submissions.parquet_temp")
|
|
||||||
|
191
tf_comments.py
Executable file
191
tf_comments.py
Executable file
@ -0,0 +1,191 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import pyarrow as pa
|
||||||
|
import pyarrow.dataset as ds
|
||||||
|
import pyarrow.parquet as pq
|
||||||
|
from itertools import groupby, islice, chain
|
||||||
|
import fire
|
||||||
|
from collections import Counter
|
||||||
|
import pandas as pd
|
||||||
|
import os
|
||||||
|
import datetime
|
||||||
|
import re
|
||||||
|
from nltk import wordpunct_tokenize, MWETokenizer, sent_tokenize
|
||||||
|
from nltk.corpus import stopwords
|
||||||
|
from nltk.util import ngrams
|
||||||
|
import string
|
||||||
|
from random import random
|
||||||
|
|
||||||
|
# remove urls
|
||||||
|
# taken from https://stackoverflow.com/questions/3809401/what-is-a-good-regular-expression-to-match-a-url
|
||||||
|
urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)")
|
||||||
|
|
||||||
|
# compute term frequencies for comments in each subreddit by week
|
||||||
|
def weekly_tf(partition, mwe_pass = 'first'):
|
||||||
|
dataset = ds.dataset(f'/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/{partition}', format='parquet')
|
||||||
|
|
||||||
|
if not os.path.exists("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/"):
|
||||||
|
os.mkdir("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/")
|
||||||
|
|
||||||
|
if not os.path.exists("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/"):
|
||||||
|
os.mkdir("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
|
||||||
|
|
||||||
|
ngram_output = partition.replace("parquet","txt")
|
||||||
|
|
||||||
|
if os.path.exists(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}"):
|
||||||
|
os.remove(f"/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}")
|
||||||
|
|
||||||
|
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
|
||||||
|
|
||||||
|
|
||||||
|
schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
|
||||||
|
pa.field('term', pa.string(), nullable=False),
|
||||||
|
pa.field('week', pa.date32(), nullable=False),
|
||||||
|
pa.field('tf', pa.int64(), nullable=False)]
|
||||||
|
)
|
||||||
|
|
||||||
|
author_schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
|
||||||
|
pa.field('author', pa.string(), nullable=False),
|
||||||
|
pa.field('week', pa.date32(), nullable=False),
|
||||||
|
pa.field('tf', pa.int64(), nullable=False)]
|
||||||
|
)
|
||||||
|
|
||||||
|
dfs = (b.to_pandas() for b in batches)
|
||||||
|
|
||||||
|
def add_week(df):
|
||||||
|
df['week'] = (df.CreatedAt - pd.to_timedelta(df.CreatedAt.dt.dayofweek, unit='d')).dt.date
|
||||||
|
return(df)
|
||||||
|
|
||||||
|
dfs = (add_week(df) for df in dfs)
|
||||||
|
|
||||||
|
def iterate_rows(dfs):
|
||||||
|
for df in dfs:
|
||||||
|
for row in df.itertuples():
|
||||||
|
yield row
|
||||||
|
|
||||||
|
rows = iterate_rows(dfs)
|
||||||
|
|
||||||
|
subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
|
||||||
|
|
||||||
|
if mwe_pass != 'first':
|
||||||
|
mwe_dataset = pd.read_feather(f'/gscratch/comdata/users/nathante/reddit_multiword_expressions.feather')
|
||||||
|
mwe_dataset = mwe_dataset.sort_values(['phrasePWMI'],ascending=False)
|
||||||
|
mwe_phrases = list(mwe_dataset.phrase)
|
||||||
|
mwe_phrases = [tuple(s.split(' ')) for s in mwe_phrases]
|
||||||
|
mwe_tokenizer = MWETokenizer(mwe_phrases)
|
||||||
|
mwe_tokenize = mwe_tokenizer.tokenize
|
||||||
|
|
||||||
|
else:
|
||||||
|
mwe_tokenize = MWETokenizer().tokenize
|
||||||
|
|
||||||
|
def remove_punct(sentence):
|
||||||
|
new_sentence = []
|
||||||
|
for token in sentence:
|
||||||
|
new_token = ''
|
||||||
|
for c in token:
|
||||||
|
if c not in string.punctuation:
|
||||||
|
new_token += c
|
||||||
|
if len(new_token) > 0:
|
||||||
|
new_sentence.append(new_token)
|
||||||
|
return new_sentence
|
||||||
|
|
||||||
|
|
||||||
|
stopWords = set(stopwords.words('english'))
|
||||||
|
|
||||||
|
# we follow the approach described in datta, phelan, adar 2017
|
||||||
|
def my_tokenizer(text):
|
||||||
|
# remove stopwords, punctuation, urls, lower case
|
||||||
|
# lowercase
|
||||||
|
text = text.lower()
|
||||||
|
|
||||||
|
# remove urls
|
||||||
|
text = urlregex.sub("", text)
|
||||||
|
|
||||||
|
# sentence tokenize
|
||||||
|
sentences = sent_tokenize(text)
|
||||||
|
|
||||||
|
# wordpunct_tokenize
|
||||||
|
sentences = map(wordpunct_tokenize, sentences)
|
||||||
|
|
||||||
|
# remove punctuation
|
||||||
|
|
||||||
|
sentences = map(remove_punct, sentences)
|
||||||
|
|
||||||
|
# remove sentences with less than 2 words
|
||||||
|
sentences = filter(lambda sentence: len(sentence) > 2, sentences)
|
||||||
|
|
||||||
|
# datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase.
|
||||||
|
# they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms
|
||||||
|
# here we take a 10 percent sample of sentences
|
||||||
|
if mwe_pass == 'first':
|
||||||
|
sentences = list(sentences)
|
||||||
|
for sentence in sentences:
|
||||||
|
if random() <= 0.1:
|
||||||
|
grams = list(chain(*map(lambda i : ngrams(sentence,i),range(4))))
|
||||||
|
with open(f'/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/{ngram_output}','a') as gram_file:
|
||||||
|
for ng in grams:
|
||||||
|
gram_file.write(' '.join(ng) + '\n')
|
||||||
|
for token in sentence:
|
||||||
|
if token not in stopWords:
|
||||||
|
yield token
|
||||||
|
|
||||||
|
else:
|
||||||
|
# remove stopWords
|
||||||
|
sentences = map(mwe_tokenize, sentences)
|
||||||
|
sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
|
||||||
|
for sentence in sentences:
|
||||||
|
for token in sentence:
|
||||||
|
yield token
|
||||||
|
|
||||||
|
def tf_comments(subreddit_weeks):
|
||||||
|
for key, posts in subreddit_weeks:
|
||||||
|
subreddit, week = key
|
||||||
|
tfs = Counter([])
|
||||||
|
authors = Counter([])
|
||||||
|
for post in posts:
|
||||||
|
tokens = my_tokenizer(post.body)
|
||||||
|
tfs.update(tokens)
|
||||||
|
authors.update([post.author])
|
||||||
|
|
||||||
|
for term, tf in tfs.items():
|
||||||
|
yield [True, subreddit, term, week, tf]
|
||||||
|
|
||||||
|
for author, tf in authors.items():
|
||||||
|
yield [False, subreddit, author, week, tf]
|
||||||
|
|
||||||
|
outrows = tf_comments(subreddit_weeks)
|
||||||
|
|
||||||
|
outchunksize = 10000
|
||||||
|
|
||||||
|
with pq.ParquetWriter(f"/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter(f"/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
|
||||||
|
|
||||||
|
while True:
|
||||||
|
|
||||||
|
chunk = islice(outrows,outchunksize)
|
||||||
|
chunk = (c for c in chunk if c[1] is not None)
|
||||||
|
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
|
||||||
|
author_pddf = pddf.loc[pddf.is_token == False, schema.names]
|
||||||
|
pddf = pddf.loc[pddf.is_token == True, schema.names]
|
||||||
|
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
|
||||||
|
author_pddf = author_pddf.loc[:,author_schema.names]
|
||||||
|
|
||||||
|
table = pa.Table.from_pandas(pddf,schema=schema)
|
||||||
|
author_table = pa.Table.from_pandas(author_pddf,schema=author_schema)
|
||||||
|
if table.shape[0] == 0:
|
||||||
|
break
|
||||||
|
writer.write_table(table)
|
||||||
|
author_writer.write_table(author_table)
|
||||||
|
|
||||||
|
writer.close()
|
||||||
|
author_writer.close()
|
||||||
|
|
||||||
|
|
||||||
|
def gen_task_list(mwe_pass='first'):
|
||||||
|
files = os.listdir("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/")
|
||||||
|
with open("tf_task_list",'w') as outfile:
|
||||||
|
for f in files:
|
||||||
|
if f.endswith(".parquet"):
|
||||||
|
outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
fire.Fire({"gen_task_list":gen_task_list,
|
||||||
|
"weekly_tf":weekly_tf})
|
58
top_comment_phrases.py
Normal file
58
top_comment_phrases.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
from pyspark.sql import functions as f
|
||||||
|
from pyspark.sql import Window
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
df = spark.read.text("/gscratch/comdata/users/nathante/reddit_comment_ngrams_10p_sample/")
|
||||||
|
|
||||||
|
df = df.withColumnRenamed("value","phrase")
|
||||||
|
|
||||||
|
# count phrase occurrances
|
||||||
|
phrases = df.groupby('phrase').count()
|
||||||
|
phrases = phrases.withColumnRenamed('count','phraseCount')
|
||||||
|
phrases = phrases.filter(phrases.phraseCount > 10)
|
||||||
|
|
||||||
|
|
||||||
|
# count overall
|
||||||
|
N = phrases.select(f.sum(phrases.phraseCount).alias("phraseCount")).collect()[0].phraseCount
|
||||||
|
|
||||||
|
print(f'analyzing PMI on a sample of {N} phrases')
|
||||||
|
logN = np.log(N)
|
||||||
|
phrases = phrases.withColumn("phraseLogProb", f.log(f.col("phraseCount")) - logN)
|
||||||
|
|
||||||
|
# count term occurrances
|
||||||
|
phrases = phrases.withColumn('terms',f.split(f.col('phrase'),' '))
|
||||||
|
terms = phrases.select(['phrase','phraseCount','phraseLogProb',f.explode(phrases.terms).alias('term')])
|
||||||
|
|
||||||
|
win = Window.partitionBy('term')
|
||||||
|
terms = terms.withColumn('termCount',f.sum('phraseCount').over(win))
|
||||||
|
terms = terms.withColumnRenamed('count','termCount')
|
||||||
|
terms = terms.withColumn('termLogProb',f.log(f.col('termCount')) - logN)
|
||||||
|
|
||||||
|
terms = terms.groupBy(terms.phrase, terms.phraseLogProb, terms.phraseCount).sum('termLogProb')
|
||||||
|
terms = terms.withColumnRenamed('sum(termLogProb)','termsLogProb')
|
||||||
|
terms = terms.withColumn("phrasePWMI", f.col('phraseLogProb') - f.col('termsLogProb'))
|
||||||
|
|
||||||
|
# join phrases to term counts
|
||||||
|
|
||||||
|
|
||||||
|
df = terms.select(['phrase','phraseCount','phraseLogProb','phrasePWMI'])
|
||||||
|
|
||||||
|
df = df.sort(['phrasePWMI'],descending=True)
|
||||||
|
df = df.sortWithinPartitions(['phrasePWMI'],descending=True)
|
||||||
|
df.write.parquet("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet/",mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet/")
|
||||||
|
|
||||||
|
df.write.csv("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.csv/",mode='overwrite',compression='none')
|
||||||
|
|
||||||
|
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet")
|
||||||
|
df = df.select('phrase','phraseCount','phraseLogProb','phrasePWMI')
|
||||||
|
|
||||||
|
# choosing phrases occurring at least 3500 times in the 10% sample (35000 times) and then with a PWMI of at least 3 yeids about 65000 expressions.
|
||||||
|
#
|
||||||
|
df = df.filter(f.col('phraseCount') > 3500).filter(f.col("phrasePWMI")>3)
|
||||||
|
df = df.toPandas()
|
||||||
|
df.to_feather("/gscratch/comdata/users/nathante/reddit_multiword_expressions.feather")
|
||||||
|
df.to_csv("/gscratch/comdata/users/nathante/reddit_multiword_expressions.csv")
|
Loading…
Reference in New Issue
Block a user