Add code for running tf-idf at the weekly level.
This commit is contained in:
parent
db5879d6c9
commit
a60747292e
@ -7,7 +7,7 @@ import pandas as pd
|
||||
import fire
|
||||
from itertools import islice
|
||||
from pathlib import Path
|
||||
from similarities_helper import cosine_similarities
|
||||
from similarities_helper import cosine_similarities, prep_tfidf_entries, read_tfidf_matrix, column_similarities
|
||||
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
@ -31,49 +31,89 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get
|
||||
where to output csv and feather outputs
|
||||
'''
|
||||
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
print(outfile)
|
||||
|
||||
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet')
|
||||
|
||||
if included_subreddits is None:
|
||||
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
||||
included_subreddits = {s.strip('\n') for s in included_subreddits}
|
||||
rankdf = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv")
|
||||
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
|
||||
|
||||
else:
|
||||
included_subreddits = set(open(included_subreddits))
|
||||
|
||||
sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold)
|
||||
print("creating temporary parquet with matrix indicies")
|
||||
tempdir = prep_tfidf_entries(tfidf, 'author', min_df, included_subreddits)
|
||||
tfidf = spark.read.parquet(tempdir.name)
|
||||
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||||
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||||
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||
spark.stop()
|
||||
|
||||
print("loading matrix")
|
||||
mat = read_tfidf_matrix(tempdir.name,'author')
|
||||
print('computing similarities')
|
||||
sims = column_similarities(mat)
|
||||
del mat
|
||||
|
||||
sims = pd.DataFrame(sims.todense())
|
||||
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
|
||||
sims['subreddit'] = subreddit_names.subreddit.values
|
||||
|
||||
p = Path(outfile)
|
||||
|
||||
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||
sim_dist = sim_dist.entries.toDF()
|
||||
|
||||
sim_dist = sim_dist.repartition(1)
|
||||
sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
||||
sims.to_feather(outfile)
|
||||
tempdir.cleanup()
|
||||
|
||||
# print(outfile)
|
||||
|
||||
# tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet')
|
||||
|
||||
# if included_subreddits is None:
|
||||
# included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
||||
# included_subreddits = {s.strip('\n') for s in included_subreddits}
|
||||
|
||||
# else:
|
||||
# included_subreddits = set(open(included_subreddits))
|
||||
|
||||
# sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold)
|
||||
|
||||
# p = Path(outfile)
|
||||
|
||||
# output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||
# output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||
# output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||
# sim_dist = sim_dist.entries.toDF()
|
||||
|
||||
# sim_dist = sim_dist.repartition(1)
|
||||
# sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
||||
|
||||
|
||||
|
||||
#instead of toLocalMatrix() why not read as entries and put strait into numpy
|
||||
sim_entries = pd.read_parquet(output_parquet)
|
||||
# #instead of toLocalMatrix() why not read as entries and put strait into numpy
|
||||
# sim_entries = pd.read_parquet(output_parquet)
|
||||
|
||||
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
||||
# df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
||||
|
||||
spark.stop()
|
||||
df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
||||
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
||||
df = df.set_index('subreddit_id_new')
|
||||
# spark.stop()
|
||||
# df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
||||
# df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
||||
# df = df.set_index('subreddit_id_new')
|
||||
|
||||
similarities = sim_entries.join(df, on='i')
|
||||
similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
||||
similarities = similarities.join(df, on='j')
|
||||
similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
||||
# similarities = sim_entries.join(df, on='i')
|
||||
# similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
||||
# similarities = similarities.join(df, on='j')
|
||||
# similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
||||
|
||||
similarities.to_feather(output_feather)
|
||||
similarities.to_csv(output_csv)
|
||||
return similarities
|
||||
# similarities.to_feather(output_feather)
|
||||
# similarities.to_csv(output_csv)
|
||||
# return similarities
|
||||
|
||||
if __name__ == '__main__':
|
||||
fire.Fire(author_cosine_similarities)
|
||||
|
@ -119,6 +119,59 @@ def cosine_similarities(tfidf, term_colname, min_df, included_subreddits, simila
|
||||
return (sim_dist, tfidf)
|
||||
|
||||
|
||||
def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
|
||||
# aggregate counts by week. now subreddit-term is distinct
|
||||
df = df.filter(df.subreddit.isin(include_subs))
|
||||
df = df.groupBy(['subreddit',term,'week']).agg(f.sum('tf').alias('tf'))
|
||||
|
||||
max_subreddit_terms = df.groupby(['subreddit','week']).max('tf') # subreddits are unique
|
||||
max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
|
||||
df = df.join(max_subreddit_terms, on=['subreddit','week'])
|
||||
df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
|
||||
|
||||
# group by term. term is unique
|
||||
idf = df.groupby([term,'week']).count()
|
||||
|
||||
N_docs = df.select(['subreddit','week']).distinct().groupby(['week']).agg(f.count("subreddit").alias("subreddits_in_week"))
|
||||
|
||||
idf = idf.join(N_docs, on=['week'])
|
||||
|
||||
# add a little smoothing to the idf
|
||||
idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
|
||||
|
||||
# collect the dictionary to make a pydict of terms to indexes
|
||||
terms = idf.select([term,'week']).distinct() # terms are distinct
|
||||
|
||||
terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
|
||||
|
||||
# make subreddit ids
|
||||
subreddits = df.select(['subreddit','week']).distinct()
|
||||
subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
|
||||
|
||||
df = df.join(subreddits,on=['subreddit','week'])
|
||||
|
||||
# map terms to indexes in the tfs and the idfs
|
||||
df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
|
||||
|
||||
idf = idf.join(terms,on=[term,'week'])
|
||||
|
||||
# join on subreddit/term to create tf/dfs indexed by term
|
||||
df = df.join(idf, on=[term_id, term,'week'])
|
||||
|
||||
# agg terms by subreddit to make sparse tf/df vectors
|
||||
|
||||
if tf_family == tf_weight.MaxTF:
|
||||
df = df.withColumn("tf_idf", df.relative_tf * df.idf)
|
||||
else: # tf_fam = tf_weight.Norm05
|
||||
df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
|
||||
def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
|
||||
|
||||
term = term_colname
|
||||
|
@ -1,12 +1,14 @@
|
||||
from pyspark.sql import SparkSession
|
||||
from similarities_helper import build_tfidf_dataset
|
||||
import pandas as pd
|
||||
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
|
||||
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp")
|
||||
|
||||
include_subs = set(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"))
|
||||
include_subs = {s.strip('\n') for s in include_subs}
|
||||
include_subs = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv")
|
||||
|
||||
#include_subs = set(include_subs.loc[include_subs.comments_rank < 300]['subreddit'])
|
||||
|
||||
# remove [deleted] and AutoModerator (TODO remove other bots)
|
||||
df = df.filter(df.author != '[deleted]')
|
||||
|
Loading…
Reference in New Issue
Block a user