Use multiword expressions in tf.
This commit is contained in:
parent
57951050c0
commit
c0da8f4dbf
29
tf_comments.py
Normal file → Executable file
29
tf_comments.py
Normal file → Executable file
@ -1,3 +1,4 @@
|
||||
#!/usr/bin/env python3
|
||||
import pyarrow as pa
|
||||
import pyarrow.dataset as ds
|
||||
import pyarrow.parquet as pq
|
||||
@ -35,6 +36,7 @@ def weekly_tf(partition, mwe_pass = 'first'):
|
||||
|
||||
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
|
||||
|
||||
|
||||
schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
|
||||
pa.field('term', pa.string(), nullable=False),
|
||||
pa.field('week', pa.date32(), nullable=False),
|
||||
@ -65,14 +67,15 @@ def weekly_tf(partition, mwe_pass = 'first'):
|
||||
subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
|
||||
|
||||
if mwe_pass != 'first':
|
||||
mwe_dataset = ds.dataset(f'/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet',format='parquet')
|
||||
mwe_dataset = mwe_dataset.to_pandas(columns=['phrase','phraseCount','phrasePWMI'])
|
||||
mwe_dataset = pd.read_feather(f'/gscratch/comdata/users/nathante/reddit_multiword_expressions.feather')
|
||||
mwe_dataset = mwe_dataset.sort_values(['phrasePWMI'],ascending=False)
|
||||
mwe_phrases = list(mwe_dataset.phrase[0:1000])
|
||||
|
||||
|
||||
mwe_tokenize = MWETokenizer(mwe_phrases).tokenize
|
||||
|
||||
mwe_phrases = list(mwe_dataset.phrase)
|
||||
mwe_phrases = [tuple(s.split(' ')) for s in mwe_phrases]
|
||||
mwe_tokenizer = MWETokenizer(mwe_phrases)
|
||||
mwe_tokenize = mwe_tokenizer.tokenize
|
||||
|
||||
else:
|
||||
mwe_tokenize = MWETokenizer().tokenize
|
||||
|
||||
def remove_punct(sentence):
|
||||
new_sentence = []
|
||||
@ -129,7 +132,9 @@ def weekly_tf(partition, mwe_pass = 'first'):
|
||||
# remove stopWords
|
||||
sentences = map(mwe_tokenize, sentences)
|
||||
sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
|
||||
return chain(* sentences)
|
||||
for sentence in sentences:
|
||||
for token in sentence:
|
||||
yield token
|
||||
|
||||
def tf_comments(subreddit_weeks):
|
||||
for key, posts in subreddit_weeks:
|
||||
@ -152,13 +157,15 @@ def weekly_tf(partition, mwe_pass = 'first'):
|
||||
outchunksize = 10000
|
||||
|
||||
with pq.ParquetWriter(f"/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter(f"/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
|
||||
|
||||
while True:
|
||||
|
||||
chunk = islice(outrows,outchunksize)
|
||||
chunk = (c for c in chunk if c.subreddit is not None)
|
||||
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
|
||||
|
||||
author_pddf = pddf.loc[pddf.is_token == False, schema.names]
|
||||
pddf = pddf.loc[pddf.is_token == True, schema.names]
|
||||
|
||||
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
|
||||
author_pddf = author_pddf.loc[:,author_schema.names]
|
||||
|
||||
@ -173,12 +180,12 @@ def weekly_tf(partition, mwe_pass = 'first'):
|
||||
author_writer.close()
|
||||
|
||||
|
||||
def gen_task_list():
|
||||
def gen_task_list(mwe_pass='first'):
|
||||
files = os.listdir("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/")
|
||||
with open("tf_task_list",'w') as outfile:
|
||||
for f in files:
|
||||
if f.endswith(".parquet"):
|
||||
outfile.write(f"python3 tf_comments.py weekly_tf {f}\n")
|
||||
outfile.write(f"python3 tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n")
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({"gen_task_list":gen_task_list,
|
||||
|
Loading…
Reference in New Issue
Block a user