add cluster selection to visualization
This commit is contained in:
parent
e6294b5b90
commit
dbe4c87f8b
@ -9,16 +9,38 @@ import fire
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
def base_plot(plot_data):
|
def base_plot(plot_data):
|
||||||
|
|
||||||
|
# base = base.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
|
||||||
|
|
||||||
|
cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))])
|
||||||
|
|
||||||
|
subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit))
|
||||||
|
|
||||||
|
cluster_click_select = alt.selection_single(on='click,',fields=['cluster'], bind=cluster_dropdown, name=' ')
|
||||||
|
# cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster')
|
||||||
|
# cluster_select_and = cluster_click_select & cluster_select
|
||||||
|
#
|
||||||
|
# subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click')
|
||||||
|
|
||||||
|
color = alt.condition(cluster_click_select ,
|
||||||
|
alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')),
|
||||||
|
alt.value("lightgray"))
|
||||||
|
|
||||||
|
|
||||||
base = alt.Chart(plot_data).mark_text().encode(
|
base = alt.Chart(plot_data).mark_text().encode(
|
||||||
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
|
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
|
||||||
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
|
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
|
||||||
|
color=color,
|
||||||
text='subreddit')
|
text='subreddit')
|
||||||
|
|
||||||
|
base = base.add_selection(cluster_click_select)
|
||||||
|
|
||||||
|
|
||||||
return base
|
return base
|
||||||
|
|
||||||
def zoom_plot(plot_data):
|
def zoom_plot(plot_data):
|
||||||
chart = base_plot(plot_data)
|
chart = base_plot(plot_data)
|
||||||
chart = chart.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
|
|
||||||
chart = chart.interactive()
|
chart = chart.interactive()
|
||||||
chart = chart.properties(width=1275,height=1000)
|
chart = chart.properties(width=1275,height=1000)
|
||||||
|
|
||||||
@ -52,7 +74,7 @@ def viewport_plot(plot_data):
|
|||||||
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
|
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
|
||||||
)
|
)
|
||||||
|
|
||||||
sr = sr.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
|
|
||||||
sr = sr.properties(width=1275,height=600)
|
sr = sr.properties(width=1275,height=600)
|
||||||
|
|
||||||
|
|
||||||
@ -71,15 +93,29 @@ def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
|
|||||||
distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
|
distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
|
||||||
|
|
||||||
groups = tsne_data.groupby('cluster')
|
groups = tsne_data.groupby('cluster')
|
||||||
for centroid in centroids.itertuples():
|
|
||||||
c_dists = groups.apply(lambda r: min(np.sqrt(np.square(centroid.x - r.x) + np.square(centroid.y-r.y))))
|
points = np.array(tsne_data.loc[:,['x','y']])
|
||||||
distances[:,centroid.Index] = c_dists
|
centers = np.array(centroids.loc[:,['x','y']])
|
||||||
|
|
||||||
|
# point x centroid
|
||||||
|
point_center_distances = np.linalg.norm((points[:,None,:] - centers[None,:,:]),axis=-1)
|
||||||
|
|
||||||
|
# distances is cluster x point
|
||||||
|
for gid, group in groups:
|
||||||
|
c_dists = point_center_distances[group.index.values,:].min(axis=0)
|
||||||
|
distances[group.cluster.values[0],] = c_dists
|
||||||
|
|
||||||
# nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)
|
# nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)
|
||||||
# distances, indices = nbrs.kneighbors()
|
# distances, indices = nbrs.kneighbors()
|
||||||
|
|
||||||
nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
|
nearest = distances.argpartition(n_neighbors,0)
|
||||||
distances, indices = nbrs.kneighbors()
|
indices = nearest[:n_neighbors,:].T
|
||||||
|
# neighbor_distances = np.copy(distances)
|
||||||
|
# neighbor_distances.sort(0)
|
||||||
|
# neighbor_distances = neighbor_distances[0:n_neighbors,:]
|
||||||
|
|
||||||
|
# nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
|
||||||
|
# distances, indices = nbrs.kneighbors()
|
||||||
|
|
||||||
color_assignments = np.repeat(-1,len(centroids))
|
color_assignments = np.repeat(-1,len(centroids))
|
||||||
|
|
||||||
@ -119,13 +155,13 @@ def build_visualization(tsne_data, clusters, output):
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
fire.Fire(build_visualization)
|
fire.Fire(build_visualization)
|
||||||
|
|
||||||
# commenter_data = pd.read_feather("tsne_author_fit.feather")
|
commenter_data = pd.read_feather("tsne_author_fit.feather")
|
||||||
# clusters = pd.read_feather('author_3000_clusters.feather')
|
clusters = pd.read_feather('author_3000_clusters.feather')
|
||||||
# commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
|
commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
|
||||||
# commenter_zoom_plot = zoom_plot(commenter_data)
|
commenter_zoom_plot = zoom_plot(commenter_data)
|
||||||
# commenter_viewport_plot = viewport_plot(commenter_data)
|
commenter_viewport_plot = viewport_plot(commenter_data)
|
||||||
# commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
|
commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
|
||||||
# commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
|
commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
|
||||||
|
|
||||||
# chart = chart.properties(width=10000,height=10000)
|
# chart = chart.properties(width=10000,height=10000)
|
||||||
# chart.save("test_tsne_whole.svg")
|
# chart.save("test_tsne_whole.svg")
|
||||||
|
Loading…
Reference in New Issue
Block a user