Changes for cosine similarities on klone.
This commit is contained in:
parent
06430903f0
commit
f0176d9f0d
@ -14,8 +14,9 @@ def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, conv
|
||||
|
||||
df = pd.read_feather(similarities)
|
||||
n = df.shape[0]
|
||||
mat = np.array(df.drop('subreddit',1))
|
||||
mat = np.array(df.drop('_subreddit',1))
|
||||
mat[range(n),range(n)] = 1
|
||||
assert(all(np.diag(mat)==1))
|
||||
|
||||
preference = np.quantile(mat,preference_quantile)
|
||||
|
||||
|
@ -9,7 +9,8 @@ def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None,
|
||||
|
||||
|
||||
def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
|
||||
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',
|
||||
'term',
|
||||
outfile,
|
||||
min_df,
|
||||
@ -22,7 +23,7 @@ def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subredd
|
||||
)
|
||||
|
||||
def author_cosine_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',
|
||||
'author',
|
||||
outfile,
|
||||
min_df,
|
||||
@ -35,7 +36,7 @@ def author_cosine_similarities(outfile, min_df=2, max_df=None, included_subreddi
|
||||
)
|
||||
|
||||
def author_tf_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',
|
||||
'author',
|
||||
outfile,
|
||||
min_df,
|
||||
|
@ -89,7 +89,8 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
|
||||
print("loading matrix")
|
||||
# mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
|
||||
mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname)
|
||||
print('computing similarities')
|
||||
print(f'computing similarities on mat. mat.shape:{mat.shape}')
|
||||
print(f"size of mat is:{mat.data.nbytes}")
|
||||
sims = simfunc(mat)
|
||||
del mat
|
||||
|
||||
@ -387,7 +388,7 @@ def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm
|
||||
|
||||
return df
|
||||
|
||||
def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonswf.csv"):
|
||||
def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"):
|
||||
rankdf = pd.read_csv(path)
|
||||
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
|
||||
return included_subreddits
|
||||
|
@ -24,8 +24,8 @@ def _tfidf_wrapper(func, inpath, outpath, topN, term_colname, exclude, included_
|
||||
def tfidf(inpath, outpath, topN, term_colname, exclude, included_subreddits):
|
||||
return _tfidf_wrapper(build_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
|
||||
|
||||
def tfidf_weekly(inpath, outpath, topN, term_colname, exclude):
|
||||
return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, included_subreddits)
|
||||
def tfidf_weekly(inpath, outpath, topN, term_colname, exclude, included_subreddits):
|
||||
return _tfidf_wrapper(build_weekly_tfidf_dataset, inpath, outpath, topN, term_colname, exclude, included_subreddits)
|
||||
|
||||
def tfidf_authors(outpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
|
||||
topN=25000):
|
||||
|
@ -8,7 +8,22 @@ import fire
|
||||
from itertools import islice
|
||||
from pathlib import Path
|
||||
from similarities_helper import *
|
||||
from multiprocessing import pool
|
||||
|
||||
def _week_similarities(tempdir, term_colname, week):
|
||||
print(f"loading matrix: {week}")
|
||||
mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
|
||||
print('computing similarities')
|
||||
sims = column_similarities(mat)
|
||||
del mat
|
||||
|
||||
names = subreddit_names.loc[subreddit_names.week == week]
|
||||
sims = pd.DataFrame(sims.todense())
|
||||
|
||||
sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1)
|
||||
sims['_subreddit'] = names.subreddit.values
|
||||
|
||||
write_weekly_similarities(outfile, sims, week, names)
|
||||
|
||||
#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet')
|
||||
def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500):
|
||||
@ -36,24 +51,17 @@ def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None,
|
||||
spark.stop()
|
||||
|
||||
weeks = sorted(list(subreddit_names.week.drop_duplicates()))
|
||||
for week in weeks:
|
||||
print(f"loading matrix: {week}")
|
||||
mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
|
||||
print('computing similarities')
|
||||
sims = column_similarities(mat)
|
||||
del mat
|
||||
# do this step in parallel if we have the memory for it.
|
||||
# should be doable with pool.map
|
||||
|
||||
names = subreddit_names.loc[subreddit_names.week == week]
|
||||
sims = pd.DataFrame(sims.todense())
|
||||
def week_similarities_helper(week):
|
||||
_week_similarities(tempdir, term_colname, week)
|
||||
|
||||
sims = sims.rename({i: sr for i, sr in enumerate(names.subreddit.values)}, axis=1)
|
||||
sims['subreddit'] = names.subreddit.values
|
||||
with Pool(40) as pool: # maybe it can be done with 40 cores on the huge machine?
|
||||
list(pool.map(weeks,week_similarities_helper))
|
||||
|
||||
write_weekly_similarities(outfile, sims, week, names)
|
||||
|
||||
|
||||
def author_cosine_similarities_weekly(outfile, min_df=None , included_subreddits=None, topN=500):
|
||||
return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
|
||||
def author_cosine_similarities_weekly(outfile, min_df=2 , included_subreddits=None, topN=500):
|
||||
return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_100k.parquet',
|
||||
outfile,
|
||||
'author',
|
||||
min_df,
|
||||
@ -61,7 +69,7 @@ def author_cosine_similarities_weekly(outfile, min_df=None , included_subreddits
|
||||
topN)
|
||||
|
||||
def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=None, topN=500):
|
||||
return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
|
||||
return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms_100k.parquet',
|
||||
outfile,
|
||||
'term',
|
||||
min_df,
|
||||
@ -69,5 +77,5 @@ def term_cosine_similarities_weekly(outfile, min_df=None, included_subreddits=No
|
||||
topN)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire({'author':author_cosine_similarities_weekly,
|
||||
'term':term_cosine_similarities_weekly})
|
||||
fire.Fire({'authors':author_cosine_similarities_weekly,
|
||||
'terms':term_cosine_similarities_weekly})
|
||||
|
Loading…
Reference in New Issue
Block a user