212 lines
8.1 KiB
Python
Executable File
212 lines
8.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import pandas as pd
|
|
import pyarrow as pa
|
|
import pyarrow.dataset as ds
|
|
import pyarrow.parquet as pq
|
|
import pyarrow.compute as pc
|
|
from itertools import groupby, islice, chain
|
|
import fire
|
|
from collections import Counter
|
|
import os
|
|
import re
|
|
from nltk import wordpunct_tokenize, MWETokenizer, sent_tokenize
|
|
from nltk.corpus import stopwords
|
|
from nltk.util import ngrams
|
|
import string
|
|
from random import random
|
|
from redditcleaner import clean
|
|
from pathlib import Path
|
|
from datetime import datetime
|
|
|
|
# compute term frequencies for comments in each subreddit by week
|
|
def weekly_tf(partition, outputdir = '/gscratch/comdata/output/reddit_ngrams/', inputdir="/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/", mwe_pass = 'first', excluded_users=None):
|
|
|
|
dataset = ds.dataset(Path(inputdir)/partition, format='parquet')
|
|
outputdir = Path(outputdir)
|
|
samppath = outputdir / "reddit_comment_ngrams_10p_sample"
|
|
|
|
if not samppath.exists():
|
|
samppath.mkdir(parents=True, exist_ok=True)
|
|
|
|
ngram_output = partition.replace("parquet","txt")
|
|
|
|
if excluded_users is not None:
|
|
excluded_users = set(map(str.strip,open(excluded_users)))
|
|
df = df.filter(~ (f.col("author").isin(excluded_users)))
|
|
|
|
|
|
ngram_path = samppath / ngram_output
|
|
if mwe_pass == 'first':
|
|
if ngram_path.exists():
|
|
ngram_path.unlink()
|
|
|
|
dataset = dataset.filter(pc.field("CreatedAt") <= pa.scalar(datetime(2020,4,13)))
|
|
batches = dataset.to_batches(columns=['CreatedAt','subreddit','body','author'])
|
|
|
|
|
|
schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
|
|
pa.field('term', pa.string(), nullable=False),
|
|
pa.field('week', pa.date32(), nullable=False),
|
|
pa.field('tf', pa.int64(), nullable=False)]
|
|
)
|
|
|
|
author_schema = pa.schema([pa.field('subreddit', pa.string(), nullable=False),
|
|
pa.field('author', pa.string(), nullable=False),
|
|
pa.field('week', pa.date32(), nullable=False),
|
|
pa.field('tf', pa.int64(), nullable=False)]
|
|
)
|
|
|
|
dfs = (b.to_pandas() for b in batches)
|
|
|
|
def add_week(df):
|
|
df['week'] = (df.CreatedAt - pd.to_timedelta(df.CreatedAt.dt.dayofweek, unit='d')).dt.date
|
|
return(df)
|
|
|
|
dfs = (add_week(df) for df in dfs)
|
|
|
|
def iterate_rows(dfs):
|
|
for df in dfs:
|
|
for row in df.itertuples():
|
|
yield row
|
|
|
|
rows = iterate_rows(dfs)
|
|
|
|
subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
|
|
|
|
mwe_path = outputdir / "multiword_expressions.feather"
|
|
|
|
if mwe_pass != 'first':
|
|
mwe_dataset = pd.read_feather(mwe_path)
|
|
mwe_dataset = mwe_dataset.sort_values(['phrasePWMI'],ascending=False)
|
|
mwe_phrases = list(mwe_dataset.phrase)
|
|
mwe_phrases = [tuple(s.split(' ')) for s in mwe_phrases]
|
|
mwe_tokenizer = MWETokenizer(mwe_phrases)
|
|
mwe_tokenize = mwe_tokenizer.tokenize
|
|
|
|
else:
|
|
mwe_tokenize = MWETokenizer().tokenize
|
|
|
|
def remove_punct(sentence):
|
|
new_sentence = []
|
|
for token in sentence:
|
|
new_token = ''
|
|
for c in token:
|
|
if c not in string.punctuation:
|
|
new_token += c
|
|
if len(new_token) > 0:
|
|
new_sentence.append(new_token)
|
|
return new_sentence
|
|
|
|
stopWords = set(stopwords.words('english'))
|
|
|
|
# we follow the approach described in datta, phelan, adar 2017
|
|
def my_tokenizer(text):
|
|
# remove stopwords, punctuation, urls, lower case
|
|
# lowercase
|
|
text = text.lower()
|
|
|
|
# redditcleaner removes reddit markdown(newlines, quotes, bullet points, links, strikethrough, spoiler, code, superscript, table, headings)
|
|
text = clean(text)
|
|
|
|
# sentence tokenize
|
|
sentences = sent_tokenize(text)
|
|
|
|
# wordpunct_tokenize
|
|
sentences = map(wordpunct_tokenize, sentences)
|
|
|
|
# remove punctuation
|
|
|
|
sentences = map(remove_punct, sentences)
|
|
# datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase.
|
|
# they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms
|
|
# here we take a 10 percent sample of sentences
|
|
if mwe_pass == 'first':
|
|
|
|
# remove sentences with less than 2 words
|
|
sentences = filter(lambda sentence: len(sentence) > 2, sentences)
|
|
sentences = list(sentences)
|
|
for sentence in sentences:
|
|
if random() <= 0.1:
|
|
grams = list(chain(*map(lambda i : ngrams(sentence,i),range(4))))
|
|
with open(ngram_path,'a') as gram_file:
|
|
for ng in grams:
|
|
gram_file.write(' '.join(ng) + '\n')
|
|
for token in sentence:
|
|
if token not in stopWords:
|
|
yield token
|
|
|
|
else:
|
|
# remove stopWords
|
|
sentences = map(mwe_tokenize, sentences)
|
|
sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
|
|
for sentence in sentences:
|
|
for token in sentence:
|
|
yield token
|
|
|
|
def tf_comments(subreddit_weeks):
|
|
for key, posts in subreddit_weeks:
|
|
subreddit, week = key
|
|
tfs = Counter([])
|
|
authors = Counter([])
|
|
for post in posts:
|
|
tokens = my_tokenizer(post.body)
|
|
tfs.update(tokens)
|
|
authors.update([post.author])
|
|
|
|
for term, tf in tfs.items():
|
|
yield [True, subreddit, term, week, tf]
|
|
|
|
for author, tf in authors.items():
|
|
yield [False, subreddit, author, week, tf]
|
|
|
|
outrows = tf_comments(subreddit_weeks)
|
|
|
|
outchunksize = 10000
|
|
|
|
termtf_outputdir = (outputdir / "comment_terms.parquet")
|
|
termtf_outputdir.mkdir(parents=True, exist_ok=True)
|
|
authortf_outputdir = (outputdir / "comment_authors.parquet")
|
|
authortf_outputdir.mkdir(parents=True, exist_ok=True)
|
|
termtf_path = termtf_outputdir / partition
|
|
authortf_path = authortf_outputdir / partition
|
|
with pq.ParquetWriter(termtf_path, schema=schema, compression='snappy', flavor='spark') as writer, \
|
|
pq.ParquetWriter(authortf_path, schema=author_schema, compression='snappy', flavor='spark') as author_writer:
|
|
|
|
while True:
|
|
|
|
chunk = islice(outrows,outchunksize)
|
|
chunk = (c for c in chunk if c[1] is not None)
|
|
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
|
|
author_pddf = pddf.loc[pddf.is_token == False, schema.names]
|
|
pddf = pddf.loc[pddf.is_token == True, schema.names]
|
|
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
|
|
author_pddf = author_pddf.loc[:,author_schema.names]
|
|
table = pa.Table.from_pandas(pddf,schema=schema)
|
|
author_table = pa.Table.from_pandas(author_pddf,schema=author_schema)
|
|
do_break = True
|
|
|
|
if table.shape[0] != 0:
|
|
writer.write_table(table)
|
|
do_break = False
|
|
if author_table.shape[0] != 0:
|
|
author_writer.write_table(author_table)
|
|
do_break = False
|
|
|
|
if do_break:
|
|
break
|
|
|
|
writer.close()
|
|
author_writer.close()
|
|
|
|
|
|
def gen_task_list(mwe_pass='first', inputdir="/gscratch/comdata/output/reddit_comments_by_subreddit.parquet/", outputdir='/gscratch/comdata/output/reddit_ngrams/', tf_task_list='tf_task_list', excluded_users_file=None):
|
|
files = os.listdir(inputdir)
|
|
with open(tf_task_list,'w') as outfile:
|
|
for f in files:
|
|
if f.endswith(".parquet"):
|
|
outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} --inputdir {inputdir} --outputdir {outputdir} --excluded_users {excluded_users_file} {f}\n")
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire({"gen_task_list":gen_task_list,
|
|
"weekly_tf":weekly_tf})
|