13
0
cdsc_reddit/density/overlap_density.py
2020-12-24 22:38:04 -08:00

77 lines
2.9 KiB
Python

import pandas as pd
from pandas.core.groupby import DataFrameGroupBy as GroupBy
import fire
import numpy as np
import sys
sys.path.append("..")
sys.path.append("../similarities")
from similarities.similarities_helper import read_tfidf_matrix, reindex_tfidf, reindex_tfidf_time_interval
# this is the mean of the ratio of the overlap to the focal size.
# mean shared membership per focal community member
# the input is the author tf-idf matrix
def overlap_density(inpath, outpath, agg = pd.DataFrame.sum):
df = pd.read_feather(inpath)
df = df.drop('subreddit',1)
np.fill_diagonal(df.values,0)
df = agg(df, 0).reset_index()
df = df.rename({0:'overlap_density'},axis='columns')
df.to_feather(outpath)
return df
def overlap_density_weekly(inpath, outpath, agg = GroupBy.sum):
df = pd.read_parquet(inpath)
# exclude the diagonal
df = df.loc[df.subreddit != df.variable]
res = agg(df.groupby(['subreddit','week'])).reset_index()
res.to_feather(outpath)
return res
# inpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet";
# min_df=1;
# included_subreddits=None;
# topN=10000;
# outpath="/gscratch/comdata/output/reddit_density/wang_overlaps_10000.feather"
# to_date=2019-10-28
def author_overlap_density(inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather",
outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather", agg=pd.DataFrame.sum):
if type(agg) == str:
agg = eval(agg)
overlap_density(inpath, outpath, agg)
def term_overlap_density(inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather",
outpath="/gscratch/comdata/output/reddit_density/comment_term_similarity_10000.feather", agg=pd.DataFrame.sum):
if type(agg) == str:
agg = eval(agg)
overlap_density(inpath, outpath, agg)
def author_overlap_density_weekly(inpath="/gscratch/comdata/output/reddit_similarity/subreddit_authors_10000_weekly.parquet",
outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000_weekly.feather", agg=GroupBy.sum):
if type(agg) == str:
agg = eval(agg)
overlap_density_weekly(inpath, outpath, agg)
def term_overlap_density_weekly(inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet",
outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000_weekly.parquet", agg=GroupBy.sum):
if type(agg) == str:
agg = eval(agg)
overlap_density_weekly(inpath, outpath, agg)
if __name__ == "__main__":
fire.Fire({'authors':author_overlap_density,
'terms':term_overlap_density,
'author_weekly':author_overlap_density_weekly,
'term_weekly':term_overlap_density_weekly,
'wang_overlaps':wang_overlap_density})