13
0
cdsc_reddit/visualization/tsne_vis.py

168 lines
5.7 KiB
Python

import pyarrow
import altair as alt
alt.data_transformers.disable_max_rows()
alt.data_transformers.enable('default')
from sklearn.neighbors import NearestNeighbors
import pandas as pd
from numpy import random
import fire
import numpy as np
def base_plot(plot_data):
# base = base.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))])
subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit))
cluster_click_select = alt.selection_single(on='click,',fields=['cluster'], bind=cluster_dropdown, name=' ')
# cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster')
# cluster_select_and = cluster_click_select & cluster_select
#
# subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click')
color = alt.condition(cluster_click_select ,
alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')),
alt.value("lightgray"))
base = alt.Chart(plot_data).mark_text().encode(
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
color=color,
text='subreddit')
base = base.add_selection(cluster_click_select)
return base
def zoom_plot(plot_data):
chart = base_plot(plot_data)
chart = chart.interactive()
chart = chart.properties(width=1275,height=1000)
return chart
def viewport_plot(plot_data):
selector1 = alt.selection_interval(encodings=['x','y'],init={'x':(-65,65),'y':(-65,65)})
selectorx2 = alt.selection_interval(encodings=['x'],init={'x':(30,40)})
selectory2 = alt.selection_interval(encodings=['y'],init={'y':(-20,0)})
base = base_plot(plot_data)
viewport = base.mark_point(fillOpacity=0.2,opacity=0.2).encode(
alt.X('x',axis=alt.Axis(grid=False)),
alt.Y('y',axis=alt.Axis(grid=False)),
)
viewport = viewport.properties(width=600,height=400)
viewport1 = viewport.add_selection(selector1)
viewport2 = viewport.encode(
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)),
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1))
)
viewport2 = viewport2.add_selection(selectorx2)
viewport2 = viewport2.add_selection(selectory2)
sr = base.encode(alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectorx2)),
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
)
sr = sr.properties(width=1275,height=600)
chart = (viewport1 | viewport2) & sr
return chart
def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
tsne_data = tsne_data.merge(clusters,on='subreddit')
centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean})
color_ids = np.arange(n_colors)
distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
groups = tsne_data.groupby('cluster')
points = np.array(tsne_data.loc[:,['x','y']])
centers = np.array(centroids.loc[:,['x','y']])
# point x centroid
point_center_distances = np.linalg.norm((points[:,None,:] - centers[None,:,:]),axis=-1)
# distances is cluster x point
for gid, group in groups:
c_dists = point_center_distances[group.index.values,:].min(axis=0)
distances[group.cluster.values[0],] = c_dists
# nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)
# distances, indices = nbrs.kneighbors()
nearest = distances.argpartition(n_neighbors,0)
indices = nearest[:n_neighbors,:].T
# neighbor_distances = np.copy(distances)
# neighbor_distances.sort(0)
# neighbor_distances = neighbor_distances[0:n_neighbors,:]
# nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
# distances, indices = nbrs.kneighbors()
color_assignments = np.repeat(-1,len(centroids))
for i in range(len(centroids)):
knn = indices[i]
knn_colors = color_assignments[knn]
available_colors = color_ids[list(set(color_ids) - set(knn_colors))]
if(len(available_colors) > 0):
color_assignments[i] = available_colors[0]
else:
raise Exception("Can't color this many neighbors with this many colors")
centroids = centroids.reset_index()
colors = centroids.loc[:,['cluster']]
colors['color'] = color_assignments
tsne_data = tsne_data.merge(colors,on='cluster')
return(tsne_data)
def build_visualization(tsne_data, clusters, output):
tsne_data = pd.read_feather(tsne_data)
clusters = pd.read_feather(clusters)
tsne_data = assign_cluster_colors(tsne_data,clusters,10,8)
term_zoom_plot = zoom_plot(tsne_data)
term_zoom_plot.save(output)
term_viewport_plot = viewport_plot(tsne_data)
term_viewport_plot.save(output.replace(".html","_viewport.html"))
if __name__ == "__main__":
fire.Fire(build_visualization)
# commenter_data = pd.read_feather("tsne_author_fit.feather")
# clusters = pd.read_feather('author_3000_clusters.feather')
# commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
# commenter_zoom_plot = zoom_plot(commenter_data)
# commenter_viewport_plot = viewport_plot(commenter_data)
# commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
# commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
# chart = chart.properties(width=10000,height=10000)
# chart.save("test_tsne_whole.svg")