13
0
cdsc_reddit/clustering/hdbscan_clustering_lsi.py

102 lines
4.0 KiB
Python

from hdbscan_clustering import hdbscan_job, hdbscan_grid_sweep, hdbscan_clustering_result
from lsi_base import lsi_grid_sweep, lsi_mixin, lsi_result_mixin
from grid_sweep import grid_sweep
import fire
from dataclasses import dataclass
@dataclass
class hdbscan_clustering_result_lsi(hdbscan_clustering_result, lsi_result_mixin):
pass
class hdbscan_lsi_job(hdbscan_job, lsi_mixin):
def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
super().__init__(
infile,
outpath,
name,
*args,
**kwargs)
super().set_lsi_dims(lsi_dims)
def get_info(self):
partial_result = super().get_info()
self.result = hdbscan_clustering_result_lsi(**partial_result.__dict__,
lsi_dimensions=self.lsi_dims)
return self.result
class hdbscan_lsi_grid_sweep(lsi_grid_sweep):
def __init__(self,
inpath,
lsi_dims,
outpath,
min_cluster_sizes,
min_samples,
cluster_selection_epsilons,
cluster_selection_methods
):
super().__init__(hdbscan_lsi_job,
_hdbscan_lsi_grid_sweep,
inpath,
lsi_dims,
outpath,
min_cluster_sizes,
min_samples,
cluster_selection_epsilons,
cluster_selection_methods)
class _hdbscan_lsi_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
lsi_dim,
*args,
**kwargs):
print(args)
print(kwargs)
self.lsi_dim = lsi_dim
self.jobtype = hdbscan_lsi_job
super().__init__(self.jobtype, inpath, outpath, self.namer, [self.lsi_dim], *args, **kwargs)
def namer(self, *args, **kwargs):
s = hdbscan_grid_sweep.namer(self, *args[1:], **kwargs)
s += f"_lsi-{self.lsi_dim}"
return s
def run_hdbscan_lsi_grid_sweep(savefile, inpath, outpath, min_cluster_sizes=[2], min_samples=[1], cluster_selection_epsilons=[0], cluster_selection_methods=[1],lsi_dimensions='all'):
"""Run hdbscan clustering once or more with different parameters.
Usage:
hdbscan_clustering_lsi --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH --min_cluster_sizes=<csv> --min_samples=<csv> --cluster_selection_epsilons=<csv> --cluster_selection_methods=[eom]> --lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
Keword arguments:
savefile: path to save the metadata and diagnostics
inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
outpath: path to output fit clusterings.
min_cluster_sizes: one or more integers indicating the minumum cluster size
min_samples: one ore more integers indicating the minimum number of samples used in the algorithm
cluster_selection_epsilons: one or more similarity thresholds for transition from dbscan to hdbscan
cluster_selection_methods: one or more of "eom" or "leaf" eom gives larger clusters.
lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
"""
obj = hdbscan_lsi_grid_sweep(inpath,
lsi_dimensions,
outpath,
list(map(int,min_cluster_sizes)),
list(map(int,min_samples)),
list(map(float,cluster_selection_epsilons)),
cluster_selection_methods)
obj.run(10)
obj.save(savefile)
if __name__ == "__main__":
fire.Fire(run_hdbscan_lsi_grid_sweep)