36 lines
1.1 KiB
Python
36 lines
1.1 KiB
Python
import pyarrow
|
|
import pandas as pd
|
|
from numpy import random
|
|
import numpy as np
|
|
from sklearn.manifold import TSNE
|
|
|
|
df = pd.read_feather("reddit_term_similarity_3000.feather")
|
|
df = df.sort_values(['i','j'])
|
|
|
|
n = max(df.i.max(),df.j.max())
|
|
|
|
def zero_pad(grp):
|
|
p = grp.shape[0]
|
|
grp = grp.sort_values('j')
|
|
return np.concatenate([np.zeros(n-p),np.ones(1),np.array(grp.value)])
|
|
|
|
col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates()
|
|
first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0]
|
|
col_names = [first_name] + list(col_names.subreddit_j)
|
|
mat = df.groupby('i').apply(zero_pad)
|
|
mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)])
|
|
mat = np.stack(mat)
|
|
|
|
mat = mat + np.tril(mat.transpose(),k=-1)
|
|
dist = 2*np.arccos(mat)/np.pi
|
|
|
|
tsne_model = TSNE(2,learning_rate=200,perplexity=40,n_iter=5000,metric='precomputed')
|
|
|
|
tsne_fit_model = tsne_model.fit(dist)
|
|
|
|
tsne_fit_whole = tsne_fit_model.fit_transform(mat)
|
|
|
|
plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names})
|
|
|
|
plot_data.to_feather("tsne_subreddit_fit.feather")
|