176 lines
6.5 KiB
Python
176 lines
6.5 KiB
Python
from sklearn.metrics import silhouette_score
|
|
from sklearn.cluster import AffinityPropagation
|
|
from functools import partial
|
|
from dataclasses import dataclass
|
|
from clustering_base import sim_to_dist, process_clustering_result, clustering_result, read_similarity_mat
|
|
from clustering_base import lsi_result_mixin, lsi_mixin, clustering_job, grid_sweep, lsi_grid_sweep
|
|
from multiprocessing import Pool, cpu_count, Array, Process
|
|
from pathlib import Path
|
|
from itertools import product, starmap
|
|
import numpy as np
|
|
import pandas as pd
|
|
import fire
|
|
import sys
|
|
|
|
# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
|
|
@dataclass
|
|
class affinity_clustering_result(clustering_result):
|
|
damping:float
|
|
convergence_iter:int
|
|
preference_quantile:float
|
|
preference:float
|
|
max_iter:int
|
|
|
|
@dataclass
|
|
class affinity_clustering_result_lsi(affinity_clustering_result, lsi_result_mixin):
|
|
pass
|
|
|
|
class affinity_job(clustering_job):
|
|
def __init__(self, infile, outpath, name, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
|
|
super().__init__(infile,
|
|
outpath,
|
|
name,
|
|
call=self._affinity_clustering,
|
|
preference_quantile=preference_quantile,
|
|
damping=damping,
|
|
max_iter=max_iter,
|
|
convergence_iter=convergence_iter,
|
|
random_state=1968,
|
|
verbose=verbose)
|
|
self.damping=damping
|
|
self.max_iter=max_iter
|
|
self.convergence_iter=convergence_iter
|
|
self.preference_quantile=preference_quantile
|
|
|
|
def _affinity_clustering(self, mat, preference_quantile, *args, **kwargs):
|
|
mat = 1-mat
|
|
preference = np.quantile(mat, preference_quantile)
|
|
self.preference = preference
|
|
print(f"preference is {preference}")
|
|
print("data loaded")
|
|
sys.stdout.flush()
|
|
clustering = AffinityPropagation(*args,
|
|
preference=preference,
|
|
affinity='precomputed',
|
|
copy=False,
|
|
**kwargs).fit(mat)
|
|
return clustering
|
|
|
|
def get_info(self):
|
|
result = super().get_info()
|
|
self.result=affinity_clustering_result(**result.__dict__,
|
|
damping=self.damping,
|
|
max_iter=self.max_iter,
|
|
convergence_iter=self.convergence_iter,
|
|
preference_quantile=self.preference_quantile,
|
|
preference=self.preference)
|
|
|
|
return self.result
|
|
|
|
class affinity_lsi_job(affinity_job, lsi_mixin):
|
|
def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
|
|
super().__init__(infile,
|
|
outpath,
|
|
name,
|
|
*args,
|
|
**kwargs)
|
|
super().set_lsi_dims(lsi_dims)
|
|
|
|
def get_info(self):
|
|
result = super().get_info()
|
|
self.result = affinity_clustering_result_lsi(**result.__dict__,
|
|
lsi_dimensions=self.lsi_dims)
|
|
return self.result
|
|
|
|
class affinity_grid_sweep(grid_sweep):
|
|
def __init__(self,
|
|
inpath,
|
|
outpath,
|
|
*args,
|
|
**kwargs):
|
|
|
|
super().__init__(affinity_job,
|
|
_afffinity_grid_sweep,
|
|
inpath,
|
|
outpath,
|
|
self.namer,
|
|
*args,
|
|
**kwargs)
|
|
def namer(self,
|
|
damping,
|
|
max_iter,
|
|
convergence_iter,
|
|
preference_quantile):
|
|
|
|
return f"damp-{damping}_maxit-{max_iter}_convit-{convergence_iter}_prefq-{preference_quantile}"
|
|
|
|
class _affinity_lsi_grid_sweep(grid_sweep):
|
|
def __init__(self,
|
|
inpath,
|
|
outpath,
|
|
lsi_dim,
|
|
*args,
|
|
**kwargs):
|
|
self.lsi_dim = lsi_dim
|
|
self.jobtype = affinity_lsi_job
|
|
super().__init__(self.jobtype,
|
|
inpath,
|
|
outpath,
|
|
self.namer,
|
|
self.lsi_dim,
|
|
*args,
|
|
**kwargs)
|
|
|
|
def namer(self, *args, **kwargs):
|
|
s = affinity_grid_sweep.namer(self, *args[1:], **kwargs)
|
|
s += f"_lsi-{self.lsi_dim}"
|
|
return s
|
|
|
|
class affinity_lsi_grid_sweep(lsi_grid_sweep):
|
|
def __init__(self,
|
|
inpath,
|
|
lsi_dims,
|
|
outpath,
|
|
dampings=[0.9],
|
|
max_iters=[10000],
|
|
convergence_iters=[30],
|
|
preference_quantiles=[0.5]):
|
|
|
|
super().__init__(affinity_lsi_job,
|
|
_affinity_lsi_grid_sweep,
|
|
inpath,
|
|
lsi_dims,
|
|
outpath,
|
|
dampings,
|
|
max_iters,
|
|
convergence_iters,
|
|
preference_quantiles)
|
|
|
|
|
|
|
|
def test_select_affinity_clustering():
|
|
# select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
|
|
# "test_hdbscan_author30k",
|
|
# min_cluster_sizes=[2],
|
|
# min_samples=[1,2],
|
|
# cluster_selection_epsilons=[0,0.05,0.1,0.15],
|
|
# cluster_selection_methods=['eom','leaf'],
|
|
# lsi_dimensions='all')
|
|
inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/"
|
|
outpath = "test_affinity";
|
|
dampings=[0.8,0.9]
|
|
max_iters=[100000]
|
|
convergence_iters=[15]
|
|
preference_quantiles=[0.5,0.7]
|
|
|
|
gs = affinity_lsi_grid_sweep(inpath, 'all', outpath, dampings, max_iters, convergence_iters, preference_quantiles)
|
|
gs.run(20)
|
|
gs.save("test_affinity/lsi_sweep.csv")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire{'grid_sweep':affinity_grid_sweep,
|
|
'grid_sweep_lsi':affinity_lsi_grid_sweep
|
|
'cluster':affinity_job,
|
|
'cluster_lsi':affinity_lsi_job}
|