13
0
cdsc_reddit/clustering/affinity_clustering.py
2021-05-07 22:33:26 -07:00

176 lines
6.5 KiB
Python

from sklearn.metrics import silhouette_score
from sklearn.cluster import AffinityPropagation
from functools import partial
from dataclasses import dataclass
from clustering_base import sim_to_dist, process_clustering_result, clustering_result, read_similarity_mat
from clustering_base import lsi_result_mixin, lsi_mixin, clustering_job, grid_sweep, lsi_grid_sweep
from multiprocessing import Pool, cpu_count, Array, Process
from pathlib import Path
from itertools import product, starmap
import numpy as np
import pandas as pd
import fire
import sys
# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
@dataclass
class affinity_clustering_result(clustering_result):
damping:float
convergence_iter:int
preference_quantile:float
preference:float
max_iter:int
@dataclass
class affinity_clustering_result_lsi(affinity_clustering_result, lsi_result_mixin):
pass
class affinity_job(clustering_job):
def __init__(self, infile, outpath, name, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
super().__init__(infile,
outpath,
name,
call=self._affinity_clustering,
preference_quantile=preference_quantile,
damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
random_state=1968,
verbose=verbose)
self.damping=damping
self.max_iter=max_iter
self.convergence_iter=convergence_iter
self.preference_quantile=preference_quantile
def _affinity_clustering(self, mat, preference_quantile, *args, **kwargs):
mat = 1-mat
preference = np.quantile(mat, preference_quantile)
self.preference = preference
print(f"preference is {preference}")
print("data loaded")
sys.stdout.flush()
clustering = AffinityPropagation(*args,
preference=preference,
affinity='precomputed',
copy=False,
**kwargs).fit(mat)
return clustering
def get_info(self):
result = super().get_info()
self.result=affinity_clustering_result(**result.__dict__,
damping=self.damping,
max_iter=self.max_iter,
convergence_iter=self.convergence_iter,
preference_quantile=self.preference_quantile,
preference=self.preference)
return self.result
class affinity_lsi_job(affinity_job, lsi_mixin):
def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
super().__init__(infile,
outpath,
name,
*args,
**kwargs)
super().set_lsi_dims(lsi_dims)
def get_info(self):
result = super().get_info()
self.result = affinity_clustering_result_lsi(**result.__dict__,
lsi_dimensions=self.lsi_dims)
return self.result
class affinity_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
*args,
**kwargs):
super().__init__(affinity_job,
_afffinity_grid_sweep,
inpath,
outpath,
self.namer,
*args,
**kwargs)
def namer(self,
damping,
max_iter,
convergence_iter,
preference_quantile):
return f"damp-{damping}_maxit-{max_iter}_convit-{convergence_iter}_prefq-{preference_quantile}"
class _affinity_lsi_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
lsi_dim,
*args,
**kwargs):
self.lsi_dim = lsi_dim
self.jobtype = affinity_lsi_job
super().__init__(self.jobtype,
inpath,
outpath,
self.namer,
self.lsi_dim,
*args,
**kwargs)
def namer(self, *args, **kwargs):
s = affinity_grid_sweep.namer(self, *args[1:], **kwargs)
s += f"_lsi-{self.lsi_dim}"
return s
class affinity_lsi_grid_sweep(lsi_grid_sweep):
def __init__(self,
inpath,
lsi_dims,
outpath,
dampings=[0.9],
max_iters=[10000],
convergence_iters=[30],
preference_quantiles=[0.5]):
super().__init__(affinity_lsi_job,
_affinity_lsi_grid_sweep,
inpath,
lsi_dims,
outpath,
dampings,
max_iters,
convergence_iters,
preference_quantiles)
def test_select_affinity_clustering():
# select_hdbscan_clustering("/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_30k_LSI",
# "test_hdbscan_author30k",
# min_cluster_sizes=[2],
# min_samples=[1,2],
# cluster_selection_epsilons=[0,0.05,0.1,0.15],
# cluster_selection_methods=['eom','leaf'],
# lsi_dimensions='all')
inpath = "/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors-tf_10k_LSI/"
outpath = "test_affinity";
dampings=[0.8,0.9]
max_iters=[100000]
convergence_iters=[15]
preference_quantiles=[0.5,0.7]
gs = affinity_lsi_grid_sweep(inpath, 'all', outpath, dampings, max_iters, convergence_iters, preference_quantiles)
gs.run(20)
gs.save("test_affinity/lsi_sweep.csv")
if __name__ == "__main__":
fire.Fire{'grid_sweep':affinity_grid_sweep,
'grid_sweep_lsi':affinity_lsi_grid_sweep
'cluster':affinity_job,
'cluster_lsi':affinity_lsi_job}