13
0
cdsc_reddit/clustering/affinity_clustering.py
2021-05-03 11:28:48 -07:00

133 lines
5.7 KiB
Python

from sklearn.metrics import silhouette_score
from sklearn.cluster import AffinityPropagation
from functools import partial
from dataclasses import dataclass
from clustering import _affinity_clustering, read_similarity_mat, sim_to_dist, process_clustering_result, clustering_result
from multiprocessing import Pool, cpu_count, Array, Process
from pathlib import Path
from itertools import product, starmap
import numpy as np
import pandas as pd
import fire
import sys
# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
@dataclass
class affinity_clustering_result(clustering_result):
damping:float
convergence_iter:int
preference_quantile:float
def affinity_clustering(similarities, output, *args, **kwargs):
subreddits, mat = read_similarity_mat(similarities)
clustering = _affinity_clustering(mat, *args, **kwargs)
cluster_data = process_clustering_result(clustering, subreddits)
cluster_data['algorithm'] = 'affinity'
return(cluster_data)
def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
'''
similarities: matrix of similarity scores
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.
'''
print(f"damping:{damping}; convergenceIter:{convergence_iter}; preferenceQuantile:{preference_quantile}")
preference = np.quantile(mat,preference_quantile)
print(f"preference is {preference}")
print("data loaded")
sys.stdout.flush()
clustering = AffinityPropagation(damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
copy=False,
preference=preference,
affinity='precomputed',
verbose=verbose,
random_state=random_state).fit(mat)
cluster_data = process_clustering_result(clustering, subreddits)
output = Path(output)
output.parent.mkdir(parents=True,exist_ok=True)
cluster_data.to_feather(output)
print(f"saved {output}")
return clustering
def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat, overwrite=False):
if name is None:
name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}"
print(name)
sys.stdout.flush()
outpath = outdir / (str(name) + ".feather")
outpath.parent.mkdir(parents=True,exist_ok=True)
print(outpath)
clustering = _affinity_clustering(mat, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
cluster_data = process_clustering_result(clustering, subreddits)
mat = sim_to_dist(clustering.affinity_matrix_)
try:
score = silhouette_score(mat, clustering.labels_, metric='precomputed')
except ValueError:
score = None
if alt_mat is not None:
alt_distances = sim_to_dist(alt_mat)
try:
alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
except ValueError:
alt_score = None
res = affinity_clustering_result(outpath=outpath,
damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
preference_quantile=preference_quantile,
silhouette_score=score,
alt_silhouette_score=score,
name=str(name))
return res
# alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
def select_affinity_clustering(similarities, outdir, outinfo, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
damping = list(map(float,damping))
convergence_iter = convergence_iter = list(map(int,convergence_iter))
preference_quantile = list(map(float,preference_quantile))
if type(outdir) is str:
outdir = Path(outdir)
outdir.mkdir(parents=True,exist_ok=True)
subreddits, mat = read_similarity_mat(similarities,use_threads=True)
if alt_similarities is not None:
alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
else:
alt_mat = None
if J is None:
J = cpu_count()
pool = Pool(J)
# get list of tuples: the combinations of hyperparameters
hyper_grid = product(damping, convergence_iter, preference_quantile)
hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
_do_clustering = partial(do_clustering, mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
# similarities = Array('d', mat)
# call pool.starmap
print("running clustering selection")
clustering_data = pool.starmap(_do_clustering, hyper_grid)
clustering_data = pd.DataFrame(list(clustering_data))
clustering_data.to_csv(outinfo)
return clustering_data
if __name__ == "__main__":
x = fire.Fire(select_affinity_clustering)