30 lines
1000 B
Python
30 lines
1000 B
Python
from pyspark.sql import functions as f
|
|
from pyspark.sql import SparkSession
|
|
from pyspark.sql import Window
|
|
|
|
spark = SparkSession.builder.getOrCreate()
|
|
conf = spark.sparkContext.getConf()
|
|
|
|
submissions = spark.read.parquet("/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet")
|
|
|
|
prop_nsfw = submissions.select(['subreddit','over_18']).groupby('subreddit').agg(f.mean(f.col('over_18').astype('double')).alias('prop_nsfw'))
|
|
|
|
df = spark.read.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet")
|
|
|
|
# remove /u/ pages
|
|
df = df.filter(~df.subreddit.like("u_%"))
|
|
|
|
df = df.groupBy('subreddit').agg(f.count('id').alias("n_comments"))
|
|
|
|
df = df.join(prop_nsfw,on='subreddit')
|
|
df = df.filter(df.prop_nsfw < 0.5)
|
|
|
|
win = Window.orderBy(f.col('n_comments').desc())
|
|
df = df.withColumn('comments_rank', f.rank().over(win))
|
|
|
|
df = df.toPandas()
|
|
|
|
df = df.sort_values("n_comments")
|
|
|
|
df.to_csv('/gscratch/scrubbed/comdata/reddit_similarity/subreddits_by_num_comments_nonsfw.csv', index=False)
|