13
0
cdsc_reddit/similarities/#cosine_similarities.py#
2020-12-08 17:32:20 -08:00

74 lines
2.9 KiB
Plaintext

from pyspark.sql import functions as f
from pyspark.sql import SparkSession
import pandas as pd
import fire
from pathlib import Path
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(outfile)
print(exclude_phrases)
tfidf = spark.read.parquet(infile)
if included_subreddits is None:
included_subreddits = select_topN_subreddits(topN)
else:
included_subreddits = set(open(included_subreddits))
if exclude_phrases == True:
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
print("creating temporary parquet with matrix indicies")
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits)
tfidf = spark.read.parquet(tempdir.name)
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
print("loading matrix")
mat = read_tfidf_matrix(tempdir.name, term_colname)
print('computing similarities')
sims = column_similarities(mat)
del mat
sims = pd.DataFrame(sims.todense())
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
sims['subreddit'] = subreddit_names.subreddit.values
p = Path(outfile)
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
sims.to_feather(outfile)
tempdir.cleanup()
def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
'term',
outfile,
min_df,
included_subreddits,
topN,
exclude_phrases)
def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000):
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
'author',
outfile,
min_df,
included_subreddits,
topN,
exclude_phrases=False)
if __name__ == "__main__":
fire.Fire({'term':term_cosine_similarities,
'author':author_cosine_similarities})