13
0
cdsc_reddit/similarities/similarities_helper.py
2020-12-08 17:32:20 -08:00

279 lines
10 KiB
Python

from pyspark.sql import Window
from pyspark.sql import functions as f
from enum import Enum
from pyspark.mllib.linalg.distributed import CoordinateMatrix
from tempfile import TemporaryDirectory
import pyarrow
import pyarrow.dataset as ds
from scipy.sparse import csr_matrix
import pandas as pd
import numpy as np
import pathlib
class tf_weight(Enum):
MaxTF = 1
Norm05 = 2
def read_tfidf_matrix_weekly(path, term_colname, week):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet')
entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new],filter=ds.field('week')==week).to_pandas()
return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
def write_weekly_similarities(path, sims, week, names):
sims['week'] = week
p = pathlib.Path(path)
if not p.is_dir():
p.mkdir()
# reformat as a pairwise list
sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values)
sims.to_parquet(p / week.isoformat())
def read_tfidf_matrix(path,term_colname):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet')
entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas()
return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
def column_similarities(mat):
norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
mat = mat.multiply(1/norm)
sims = mat.T @ mat
return(sims)
def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
# we might not have the same terms or subreddits each week, so we need to make unique ids for each week.
sub_ids = tfidf.select(['subreddit_id','week']).distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.partitionBy('week').orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,['subreddit_id','week'])
# only use terms in at least min_df included subreddits in a given week
new_count = tfidf.groupBy([term_id,'week']).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,[term_id,'week'],how='inner')
# reset the term ids
term_ids = tfidf.select([term_id,'week']).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.partitionBy('week').orderBy(term_id)))
tfidf = tfidf.join(term_ids,[term_id,'week'])
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
tfidf = tfidf.repartition('week')
tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
return(tempdir)
def prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
# reset the subreddit ids
sub_ids = tfidf.select('subreddit_id').distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,'subreddit_id')
# only use terms in at least min_df included subreddits
new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,term_id,how='inner')
# reset the term ids
term_ids = tfidf.select([term_id]).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
tfidf = tfidf.join(term_ids,term_id)
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
return tempdir
# try computing cosine similarities using spark
def spark_cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
tfidf = tfidf.cache()
# reset the subreddit ids
sub_ids = tfidf.select('subreddit_id').distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,'subreddit_id')
# only use terms in at least min_df included subreddits
new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,term_id,how='inner')
# reset the term ids
term_ids = tfidf.select([term_id]).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
tfidf = tfidf.join(term_ids,term_id)
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf)
# step 1 make an rdd of entires
# sorted by (dense) spark subreddit id
n_partitions = int(len(included_subreddits)*2 / 5)
entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions)
# put like 10 subredis in each partition
# step 2 make it into a distributed.RowMatrix
coordMat = CoordinateMatrix(entries)
coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions))
# this needs to be an IndexedRowMatrix()
mat = coordMat.toRowMatrix()
#goal: build a matrix of subreddit columns and tf-idfs rows
sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
return (sim_dist, tfidf)
def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
term = term_colname
term_id = term + '_id'
# aggregate counts by week. now subreddit-term is distinct
df = df.filter(df.subreddit.isin(include_subs))
df = df.groupBy(['subreddit',term,'week']).agg(f.sum('tf').alias('tf'))
max_subreddit_terms = df.groupby(['subreddit','week']).max('tf') # subreddits are unique
max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
df = df.join(max_subreddit_terms, on=['subreddit','week'])
df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
# group by term. term is unique
idf = df.groupby([term,'week']).count()
N_docs = df.select(['subreddit','week']).distinct().groupby(['week']).agg(f.count("subreddit").alias("subreddits_in_week"))
idf = idf.join(N_docs, on=['week'])
# add a little smoothing to the idf
idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
# collect the dictionary to make a pydict of terms to indexes
terms = idf.select([term,'week']).distinct() # terms are distinct
terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
# make subreddit ids
subreddits = df.select(['subreddit','week']).distinct()
subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
df = df.join(subreddits,on=['subreddit','week'])
# map terms to indexes in the tfs and the idfs
df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
idf = idf.join(terms,on=[term,'week'])
# join on subreddit/term to create tf/dfs indexed by term
df = df.join(idf, on=[term_id, term,'week'])
# agg terms by subreddit to make sparse tf/df vectors
if tf_family == tf_weight.MaxTF:
df = df.withColumn("tf_idf", df.relative_tf * df.idf)
else: # tf_fam = tf_weight.Norm05
df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
return df
def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
term = term_colname
term_id = term + '_id'
# aggregate counts by week. now subreddit-term is distinct
df = df.filter(df.subreddit.isin(include_subs))
df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
df = df.join(max_subreddit_terms, on='subreddit')
df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
# group by term. term is unique
idf = df.groupby([term]).count()
N_docs = df.select('subreddit').distinct().count()
# add a little smoothing to the idf
idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
# collect the dictionary to make a pydict of terms to indexes
terms = idf.select(term).distinct() # terms are distinct
terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
# make subreddit ids
subreddits = df.select(['subreddit']).distinct()
subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
df = df.join(subreddits,on='subreddit')
# map terms to indexes in the tfs and the idfs
df = df.join(terms,on=term) # subreddit-term-id is unique
idf = idf.join(terms,on=term)
# join on subreddit/term to create tf/dfs indexed by term
df = df.join(idf, on=[term_id, term])
# agg terms by subreddit to make sparse tf/df vectors
if tf_family == tf_weight.MaxTF:
df = df.withColumn("tf_idf", df.relative_tf * df.idf)
else: # tf_fam = tf_weight.Norm05
df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
return df
def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv"):
rankdf = pd.read_csv(path)
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
return included_subreddits