13
0
cdsc_reddit/clustering/clustering_base.py
2021-05-02 23:39:55 -07:00

50 lines
1.4 KiB
Python

from pathlib import Path
import numpy as np
import pandas as pd
from dataclasses import dataclass
def sim_to_dist(mat):
dist = 1-mat
dist[dist < 0] = 0
np.fill_diagonal(dist,0)
return dist
def process_clustering_result(clustering, subreddits):
if hasattr(clustering,'n_iter_'):
print(f"clustering took {clustering.n_iter_} iterations")
clusters = clustering.labels_
print(f"found {len(set(clusters))} clusters")
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
cluster_sizes = cluster_data.groupby("cluster").count().reset_index()
print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members")
print(f"the median cluster has {cluster_sizes.subreddit.median()} members")
print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
print(f"{(cluster_sizes.loc[cluster_sizes.cluster==-1,['subreddit']])} subreddits are in cluster -1",flush=True)
return cluster_data
@dataclass
class clustering_result:
outpath:Path
max_iter:int
silhouette_score:float
alt_silhouette_score:float
name:str
n_clusters:int
def read_similarity_mat(similarities, use_threads=True):
df = pd.read_feather(similarities, use_threads=use_threads)
mat = np.array(df.drop('_subreddit',1))
n = mat.shape[0]
mat[range(n),range(n)] = 1
return (df._subreddit,mat)