17
0
coldcallbot/assessment_and_tracking/track_participation.R
2020-12-29 12:22:35 -08:00

110 lines
3.8 KiB
R

library(ggplot2)
library(data.table)
gs <- read.delim("student_information.tsv")
d <- gs[,c(2,5)]
colnames(d) <- c("student.num", "discord.name")
call.list <- do.call("rbind", lapply(list.files(".", pattern="^call_list-.*tsv$"), function (x) {read.delim(x)[,1:4]}))
colnames(call.list) <- gsub("_", ".", colnames(call.list))
call.list$day <- as.Date(call.list$timestamp)
## drop calls where the person wasn't present
call.list.full <- call.list
call.list[!call.list$answered,]
call.list <- call.list[call.list$answered,]
call.counts <- data.frame(table(call.list$discord.name))
colnames(call.counts) <- c("discord.name", "num.calls")
d <- merge(d, call.counts, all.x=TRUE, all.y=TRUE, by="discord.name"); d
## set anything that's missing to zero
d$num.calls[is.na(d$num.calls)] <- 0
attendance <- unlist(lapply(list.files(".", pattern="^attendance-.*tsv$"), function (x) {d <- read.delim(x); strsplit(d[[2]], ",")}))
file.to.attendance.list <- function (x) {
tmp <- read.delim(x)
d.out <- data.frame(discord.name=unlist(strsplit(tmp[[2]], ",")))
d.out$day <- rep(as.Date(tmp[[1]][1]), nrow(d.out))
return(d.out)
}
attendance <- do.call("rbind",
lapply(list.files(".", pattern="^attendance-.*tsv$"),
file.to.attendance.list))
## create list of folks who are missing in class
missing.in.class <- call.list.full[is.na(call.list.full$answered) |
(!is.na(call.list.full$answered) & !call.list.full$answered),
c("discord.name", "day")]
missing.in.class <- unique(missing.in.class)
setDT(attendance)
setkey(attendance, discord.name, day)
setDT(missing.in.class)
setkey(missing.in.class, discord.name, day)
## drop presence for people on missing days
attendance[missing.in.class,]
attendance <- as.data.frame(attendance[!missing.in.class,])
attendance.counts <- data.frame(table(attendance$discord.name))
colnames(attendance.counts) <- c("discord.name", "num.present")
d <- merge(d, attendance.counts,
all.x=TRUE, all.y=TRUE,
by="discord.name")
days.list <- lapply(unique(attendance$day), function (day) {
day.total <- table(call.list.full$day == day)[["TRUE"]]
lapply(d$discord.name, function (discord.name) {
num.present <- nrow(attendance[attendance$day == day & attendance$discord.name == discord.name,])
if (num.present/day.total > 1) {print(day)}
data.frame(discord.name=discord.name,
days.present=(num.present/day.total))
})
})
days.tmp <- do.call("rbind", lapply(days.list, function (x) do.call("rbind", x)))
days.tbl <- tapply(days.tmp$days.present, days.tmp$discord.name, sum)
attendance.days <- data.frame(discord.name=names(days.tbl),
days.present=days.tbl,
days.absent=length(list.files(".", pattern="^attendance-.*tsv$"))-days.tbl)
d <- merge(d, attendance.days,
all.x=TRUE, all.y=TRUE, by="discord.name")
d[sort.list(d$days.absent), c("discord.name", "num.calls", "days.absent")]
## make some visualizations of whose here/not here
#######################################################
png("questions_absence_histogram_combined.png", units="px", width=800, height=600)
ggplot(d) +
aes(x=as.factor(num.calls), fill=days.absent, group=days.absent) +
geom_bar(color="black") +
scale_x_discrete("Number of questions asked") +
scale_y_continuous("Number of students") +
scale_fill_continuous("Days absent", low="red", high="blue")+
theme_bw()
dev.off()
png("questions_absenses_boxplots.png", units="px", width=800, height=600)
ggplot(data=d) +
aes(x=as.factor(num.calls), y=days.absent) +
geom_boxplot() +
scale_x_discrete("Number of questions asked") +
scale_y_continuous("Days absent")
dev.off()