Script for example of streaming pyarrow.
This commit is contained in:
		
							parent
							
								
									90fe976b26
								
							
						
					
					
						commit
						4efd72a916
					
				
							
								
								
									
										32
									
								
								examples/pyarrow_streaming.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								examples/pyarrow_streaming.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,32 @@ | ||||
| import pyarrow.dataset as ds | ||||
| from itertools import chain, groupby, islice | ||||
| 
 | ||||
| # A pyarrow dataset abstracts reading, writing, or filtering a parquet file. It does not read dataa into memory.  | ||||
| #dataset = ds.dataset(pathlib.Path('/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet/'), format='parquet', partitioning='hive') | ||||
| dataset = ds.dataset('/gscratch/comdata/output/reddit_submissions_by_author.parquet', format='parquet', partitioning='hive') | ||||
| 
 | ||||
| # let's get all the comments to two subreddits: | ||||
| subreddits_to_pull = ['seattlewa','seattle'] | ||||
| 
 | ||||
| # instead of loading the data into a pandas dataframe all at once we can stream it. This lets us start working with it while it is read. | ||||
| scan_tasks = dataset.scan(filter = ds.field('subreddit').isin(subreddits_to_pull), columns=['id','subreddit','CreatedAt','author','ups','downs','score','subreddit_id','stickied','title','url','is_self','selftext']) | ||||
| 
 | ||||
| # simple function to execute scantasks and create a stream of pydict rows  | ||||
| def execute_scan_task(st): | ||||
|     # an executed scan task yields an iterator of record_batches | ||||
|     def unroll_record_batch(rb): | ||||
|         df = rb.to_pandas() | ||||
|         return df.itertuples() | ||||
| 
 | ||||
|     for rb in st.execute(): | ||||
|         yield unroll_record_batch(rb) | ||||
| 
 | ||||
| 
 | ||||
| # now we just need to flatten and we have our iterator | ||||
| row_iter = chain.from_iterable(chain.from_iterable(map(lambda st: execute_scan_task(st), scan_tasks))) | ||||
| 
 | ||||
| # now we can use python's groupby function to read one author at a time | ||||
| # note that the same author can appear more than once since the record batches may not be in the correct order. | ||||
| author_submissions = groupby(row_iter, lambda row: row.author) | ||||
| for auth, posts in author_submissions: | ||||
|     print(f"{auth} has {len(list(posts))} posts") | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user