simplify simulation 02.
This commit is contained in:
		
							parent
							
								
									27a3849d5d
								
							
						
					
					
						commit
						2cd447c327
					
				| @ -31,7 +31,7 @@ source("simulation_base.R") | ||||
| 
 | ||||
| ## one way to do it is by adding correlation to x.obs and y that isn't in w. | ||||
| ## in other words, the model is missing an important feature of x.obs that's related to y. | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){ | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8){ | ||||
|     set.seed(seed) | ||||
|     # make w and y dependent | ||||
|     z <- rbinom(N, 1, 0.5) | ||||
| @ -49,107 +49,59 @@ simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0. | ||||
|         df <- df[, x.obs := x] | ||||
|     } | ||||
| 
 | ||||
|     ## px <- mean(x) | ||||
|     ## accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) | ||||
|     ## probablity of an error is correlated with y | ||||
|     p.correct <- plogis(y_bias*scale(y) + qlogis(prediction_accuracy)) | ||||
| 
 | ||||
|     ## # this works because of conditional probability | ||||
|     ## accuracy_x0 <- prediction_accuracy / (px*(accuracy_imbalance_ratio) + (1-px)) | ||||
|     ## accuracy_x1 <- accuracy_imbalance_ratio * accuracy_x0 | ||||
|     acc.x0 <- p.correct[df[,x==0]] | ||||
|     acc.x1 <- p.correct[df[,x==1]] | ||||
| 
 | ||||
|     ## x0 <- df[x==0]$x | ||||
|     ## x1 <- df[x==1]$x | ||||
|     ## nx1 <- nrow(df[x==1]) | ||||
|     ## nx0 <- nrow(df[x==0]) | ||||
|     df[x==0,w:=rlogis(.N,qlogis(1-acc.x0))] | ||||
|     df[x==1,w:=rlogis(.N,qlogis(acc.x1))] | ||||
| 
 | ||||
|     ## yx0 <- df[x==0]$y | ||||
|     ## yx1 <- df[x==1]$y  | ||||
|   | ||||
|     # tranform yz0.1 into a logistic distribution with mean accuracy_z0 | ||||
|     ## acc.x0 <- plogis(0.5*scale(yx0) + qlogis(accuracy_x0)) | ||||
|     ## acc.x1 <- plogis(1.5*scale(yx1) + qlogis(accuracy_x1)) | ||||
|     df[,w_pred := as.integer(w>0.5)] | ||||
| 
 | ||||
|     ## w0x0 <- (1-x0)**2 + (-1)**(1-x0) * acc.x0 | ||||
|     ## w0x1 <- (1-x1)**2 + (-1)**(1-x1) * acc.x1 | ||||
|     pz <- mean(z) | ||||
|     accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) | ||||
| 
 | ||||
|     # this works because of conditional probability | ||||
|     accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz)) | ||||
|     accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0 | ||||
| 
 | ||||
|     z0x0 <- df[(z==0) & (x==0)]$x | ||||
|     z0x1 <- df[(z==0) & (x==1)]$x | ||||
|     z1x0 <- df[(z==1) & (x==0)]$x | ||||
|     z1x1 <- df[(z==1) & (x==1)]$x | ||||
| 
 | ||||
|     yz0x0 <- df[(z==0) & (x==0)]$y | ||||
|     yz0x1 <- df[(z==0) & (x==1)]$y | ||||
|     yz1x0 <- df[(z==1) & (x==0)]$y | ||||
|     yz1x1 <- df[(z==1) & (x==1)]$y | ||||
| 
 | ||||
|     nz0x0 <- nrow(df[(z==0) & (x==0)]) | ||||
|     nz0x1 <- nrow(df[(z==0) & (x==1)]) | ||||
|     nz1x0 <- nrow(df[(z==1) & (x==0)]) | ||||
|     nz1x1 <- nrow(df[(z==1) & (x==1)]) | ||||
| 
 | ||||
|     yz1 <- df[z==1]$y  | ||||
|     yz1 <- df[z==1]$y  | ||||
| 
 | ||||
|     # tranform yz0.1 into a logistic distribution with mean accuracy_z0 | ||||
|     acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0)) | ||||
|     acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0)) | ||||
|     acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1)) | ||||
|     acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1)) | ||||
| 
 | ||||
|     w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0 | ||||
|     w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1 | ||||
|     w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0 | ||||
|     w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1 | ||||
| 
 | ||||
|     ##perrorz0 <- w0z0*(pyz0) | ||||
|     ##perrorz1 <- w0z1*(pyz1) | ||||
| 
 | ||||
|     w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0)) | ||||
|     w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1)) | ||||
|     w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0)) | ||||
|     w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1)) | ||||
| 
 | ||||
|     df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)] | ||||
|     df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)]     | ||||
|     df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)]     | ||||
|     df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)]     | ||||
| 
 | ||||
|     df[,w_pred:=as.integer(w > 0.5)] | ||||
|     print(mean(df[z==0]$x == df[z==0]$w_pred)) | ||||
|     print(mean(df[z==1]$x == df[z==1]$w_pred)) | ||||
|     print(mean(df$w_pred == df$x)) | ||||
|     print(mean(df[y>=0]$w_pred == df[y>=0]$x)) | ||||
|     print(mean(df[y<=0]$w_pred == df[y<=0]$x)) | ||||
| 
 | ||||
|     return(df) | ||||
| } | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models") | ||||
| parser <- add_argument(parser, "--N", default=1400, help="number of observations of w") | ||||
| parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=50, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--seed", default=51, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) | ||||
| parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) | ||||
| 
 | ||||
| parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3) | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~x*y") | ||||
| parser <- add_argument(parser, "--y_bias", help='coefficient of y on the probability a classification is correct', default=-0.75) | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| B0 <- 0 | ||||
| Bxy <- 0.3 | ||||
| Bxy <- args$Bxy | ||||
| Bzy <- args$Bzy | ||||
| Bzx <- args$Bzx | ||||
| 
 | ||||
| if(args$m < args$N){ | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, args$Bzx, Bzy, args$seed, args$y_explained_variance, args$prediction_accuracy, args$accuracy_imbalance_difference) | ||||
| 
 | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, error='') | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzx, Bzy, args$seed, args$y_explained_variance, args$prediction_accuracy, y_bias=args$y_bias) | ||||
| 
 | ||||
|     outline <- run_simulation(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~x+z+y+x:y, truth_formula=x~z) | ||||
|     ## df.pc <- df[,.(x,y,z,w_pred)] | ||||
|     ##                                     #    df.pc <- df.pc[,err:=x-w_pred] | ||||
|     ## pc.df <- pc(suffStat=list(C=cor(df.pc),n=nrow(df.pc)),indepTest=gaussCItest,labels=names(df.pc),alpha=0.05) | ||||
|     ## plot(pc.df) | ||||
| 
 | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,error='') | ||||
| 
 | ||||
|     outline <- run_simulation(df, result, outcome_formula=y~x+z, proxy_formula=as.formula(args$proxy_formula), truth_formula=x~z) | ||||
|      | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
|     if(file.exists(args$outfile)){ | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user