add mle methods from carroll
This commit is contained in:
parent
003733f22f
commit
588bdd7ed7
@ -50,8 +50,8 @@ simulate_data <- function(N, m, B0=0, Bxy=0.2, Bgy=-0.2, Bgx=0.2, y_explained_va
|
||||
}
|
||||
|
||||
df <- df[,w_pred:=x]
|
||||
|
||||
df <- df[sample(1:N,(1-prediction_accuracy)*N),w_pred:=(w_pred-1)**2]
|
||||
w <- predict(glm(x ~ w_pred,data=df,family=binomial(link='logit')),type='response')
|
||||
df <- df[,':='(w=w, w_pred = w_pred)]
|
||||
return(df)
|
||||
}
|
||||
@ -61,15 +61,20 @@ parser <- add_argument(parser, "--N", default=500, help="number of observations
|
||||
parser <- add_argument(parser, "--m", default=100, help="m the number of ground truth observations")
|
||||
parser <- add_argument(parser, "--seed", default=4321, help='seed for the rng')
|
||||
parser <- add_argument(parser, "--outfile", help='output file', default='example_1.feather')
|
||||
parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005)
|
||||
parser <- add_argument(parser, "--gx_explained_variance", help='what proportion of the variance of x can be explained by g?', default=0.15)
|
||||
parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73)
|
||||
|
||||
args <- parse_args(parser)
|
||||
|
||||
B0 <- 0
|
||||
Bxy <- 0.2
|
||||
Bgy <- -0.2
|
||||
Bgx <- 0.5
|
||||
Bgx <- 0.4
|
||||
|
||||
df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, Bgx, seed=args$seed, y_explained_variance = 0.025, gx_explained_variance = 0.15)
|
||||
result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bgx'=Bgx, 'seed'=args$seed)
|
||||
df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, Bgx, seed=args$seed, y_explained_variance = args$y_explained_variance, gx_explained_variance = args$gx_explained_variance, prediction_accuracy=args$prediction_accuracy)
|
||||
|
||||
result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bgx'=Bgx, 'seed'=args$seed, 'y_explained_variance' = args$y_explained_variance, 'gx_explained_variance' = args$gx_explained_variance, "prediction_accuracy"=args$prediction_accuracy)
|
||||
outline <- run_simulation(df, result)
|
||||
|
||||
outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
|
||||
|
@ -31,68 +31,70 @@ source("simulation_base.R")
|
||||
|
||||
## one way to do it is by adding correlation to x.obs and y that isn't in w.
|
||||
## in other words, the model is missing an important feature of x.obs that's related to y.
|
||||
simulate_data <- function(N, m, B0, Bxy, Bgy, Bkx, Bgx, seed, xy.explained.variance=0.01, u.explained.variance=0.1){
|
||||
simulate_data <- function(N, m, B0, Bxy, Bgy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){
|
||||
set.seed(seed)
|
||||
|
||||
## the true value of x
|
||||
|
||||
g <- rbinom(N, 1, 0.5)
|
||||
|
||||
# make w and y dependent
|
||||
u <- rnorm(N,0,)
|
||||
g <- rbinom(N, 1, 0.5)
|
||||
x <- rbinom(N, 1, 0.5)
|
||||
|
||||
xprime <- Bgx * g + rnorm(N,0,1)
|
||||
y.var.epsilon <- (var(Bgy * g) + var(Bxy *x) + 2*cov(Bgy*g,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance)
|
||||
y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon))
|
||||
y <- Bgy * g + Bxy * x + y.epsilon
|
||||
|
||||
k <- Bkx*xprime + rnorm(N,0,1.5) + 1.1*Bkx*u
|
||||
df <- data.table(x=x,y=y,g=g)
|
||||
|
||||
x <- as.integer(logistic(scale(xprime)) > 0.5)
|
||||
|
||||
y <- Bxy * x + Bgy * g + B0 + u + rnorm(N, 0, 1)
|
||||
|
||||
df <- data.table(x=x,k=k,y=y,g=g)
|
||||
|
||||
w.model <- glm(x ~ k,df, family=binomial(link='logit'))
|
||||
|
||||
if( m < N){
|
||||
if(m < N){
|
||||
df <- df[sample(nrow(df), m), x.obs := x]
|
||||
} else {
|
||||
df <- df[, x.obs := x]
|
||||
}
|
||||
|
||||
df[, x.obs := x.obs]
|
||||
df <- df[,w_pred:=x]
|
||||
|
||||
w <- predict(w.model, df) + rnorm(N, 0, 1)
|
||||
## y = B0 + B1x + e
|
||||
pg <- mean(g)
|
||||
px <- mean(x)
|
||||
accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2)
|
||||
|
||||
df[,':='(w=w, w_pred = as.integer(w>0.5),u=u)]
|
||||
# this works because of conditional probability
|
||||
accuracy_g0 <- prediction_accuracy / (pg*(accuracy_imbalance_ratio) + (1-pg))
|
||||
accuracy_g1 <- accuracy_imbalance_ratio * accuracy_g0
|
||||
|
||||
dfg0 <- df[g==0]
|
||||
ng0 <- nrow(dfg0)
|
||||
dfg1 <- df[g==1]
|
||||
ng1 <- nrow(dfg1)
|
||||
|
||||
dfg0 <- dfg0[sample(ng0, (1-accuracy_g0)*ng0), w_pred := (w_pred-1)**2]
|
||||
dfg1 <- dfg1[sample(ng1, (1-accuracy_g1)*ng1), w_pred := (w_pred-1)**2]
|
||||
|
||||
df <- rbind(dfg0,dfg1)
|
||||
|
||||
w <- predict(glm(x ~ w_pred,data=df,family=binomial(link='logit')),type='response')
|
||||
df <- df[,':='(w=w, w_pred = w_pred)]
|
||||
return(df)
|
||||
}
|
||||
|
||||
schennach <- function(df){
|
||||
|
||||
fwx <- glm(x.obs~w, df, family=binomial(link='logit'))
|
||||
df[,xstar_pred := predict(fwx, df)]
|
||||
gxt <- lm(y ~ xstar_pred+g, df)
|
||||
|
||||
}
|
||||
|
||||
|
||||
parser <- arg_parser("Simulate data and fit corrected models")
|
||||
parser <- add_argument(parser, "--N", default=5000, help="number of observations of w")
|
||||
parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations")
|
||||
parser <- add_argument(parser, "--seed", default=432, help='seed for the rng')
|
||||
parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
|
||||
parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01)
|
||||
parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73)
|
||||
parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3)
|
||||
|
||||
args <- parse_args(parser)
|
||||
|
||||
B0 <- 0
|
||||
Bxy <- 0.2
|
||||
Bgy <- 0
|
||||
Bkx <- 2
|
||||
Bgx <- 0
|
||||
Bgy <- -0.2
|
||||
|
||||
df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, args$seed, args$y_explained_variance, args$prediction_accuracy, args$accuracy_imbalance_difference)
|
||||
|
||||
result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference)
|
||||
|
||||
outline <- run_simulation_depvar(df=df, result)
|
||||
|
||||
outline <- run_simulation(simulate_data(args$N, args$m, B0, Bxy, Bgy, Bkx, Bgx, args$seed)
|
||||
,list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'Bkx'=Bkx, 'Bgx'=Bgx, 'seed'=args$seed))
|
||||
|
||||
outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
|
||||
if(file.exists(args$outfile)){
|
||||
|
113
simulations/03_depvar_differential.R
Normal file
113
simulations/03_depvar_differential.R
Normal file
@ -0,0 +1,113 @@
|
||||
### EXAMPLE 1: demonstrates how measurement error can lead to a type sign error in a covariate
|
||||
### What kind of data invalidates fong + tyler?
|
||||
### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign.
|
||||
### Even when you include the proxy variable in the regression.
|
||||
### But with some ground truth and multiple imputation, you can fix it.
|
||||
|
||||
library(argparser)
|
||||
library(mecor)
|
||||
library(ggplot2)
|
||||
library(data.table)
|
||||
library(filelock)
|
||||
library(arrow)
|
||||
library(Amelia)
|
||||
library(Zelig)
|
||||
library(predictionError)
|
||||
options(amelia.parallel="no",
|
||||
amelia.ncpus=1)
|
||||
setDTthreads(40)
|
||||
|
||||
source("simulation_base.R")
|
||||
|
||||
## SETUP:
|
||||
### we want to estimate x -> y; x is MAR
|
||||
### we have x -> k; k -> w; x -> w is used to predict x via the model w.
|
||||
### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments
|
||||
### The labels x are binary, but the model provides a continuous predictor
|
||||
|
||||
### simulation:
|
||||
#### how much power do we get from the model in the first place? (sweeping N and m)
|
||||
####
|
||||
|
||||
## one way to do it is by adding correlation to x.obs and y that isn't in w.
|
||||
## in other words, the model is missing an important feature of x.obs that's related to y.
|
||||
simulate_data <- function(N, m, B0, Bxy, Bgy, seed, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){
|
||||
set.seed(seed)
|
||||
# make w and y dependent
|
||||
g <- rbinom(N, 1, 0.5)
|
||||
x <- rbinom(N, 1, 0.5)
|
||||
|
||||
ystar <- Bgy * g + Bxy * x
|
||||
y <- rbinom(N,1,logistic(ystar))
|
||||
|
||||
# glm(y ~ x + g, family="binomial")
|
||||
|
||||
df <- data.table(x=x,y=y,ystar=ystar,g=g)
|
||||
|
||||
if(m < N){
|
||||
df <- df[sample(nrow(df), m), y.obs := y]
|
||||
} else {
|
||||
df <- df[, y.obs := y]
|
||||
}
|
||||
|
||||
df <- df[,w_pred:=y]
|
||||
|
||||
pg <- mean(g)
|
||||
|
||||
accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2)
|
||||
|
||||
# this works because of conditional probability
|
||||
accuracy_g0 <- prediction_accuracy / (pg*(accuracy_imbalance_ratio) + (1-pg))
|
||||
accuracy_g1 <- accuracy_imbalance_ratio * accuracy_g0
|
||||
|
||||
dfg0 <- df[g==0]
|
||||
ng0 <- nrow(dfg0)
|
||||
dfg1 <- df[g==1]
|
||||
ng1 <- nrow(dfg1)
|
||||
|
||||
dfg0 <- dfg0[sample(ng0, (1-accuracy_g0)*ng0), w_pred := (w_pred-1)**2]
|
||||
dfg1 <- dfg1[sample(ng1, (1-accuracy_g1)*ng1), w_pred := (w_pred-1)**2]
|
||||
|
||||
df <- rbind(dfg0,dfg1)
|
||||
|
||||
wmod <- glm(y.obs ~ w_pred,data=df[!is.null(y.obs)],family=binomial(link='logit'))
|
||||
w <- predict(wmod,df,type='response')
|
||||
|
||||
df <- df[,':='(w=w)]
|
||||
|
||||
return(df)
|
||||
}
|
||||
|
||||
parser <- arg_parser("Simulate data and fit corrected models")
|
||||
parser <- add_argument(parser, "--N", default=5000, help="number of observations of w")
|
||||
parser <- add_argument(parser, "--m", default=200, help="m the number of ground truth observations")
|
||||
parser <- add_argument(parser, "--seed", default=4321, help='seed for the rng')
|
||||
parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather')
|
||||
parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005)
|
||||
parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73)
|
||||
parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3)
|
||||
|
||||
args <- parse_args(parser)
|
||||
|
||||
B0 <- 0
|
||||
Bxy <- 0.2
|
||||
Bgy <- -0.2
|
||||
|
||||
df <- simulate_data(args$N, args$m, B0, Bxy, Bgy, args$seed, args$prediction_accuracy, args$accuracy_imbalance_difference)
|
||||
|
||||
result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bgy'=Bgy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference)
|
||||
|
||||
outline <- run_simulation_depvar(df=df, result)
|
||||
|
||||
|
||||
outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE)
|
||||
if(file.exists(args$outfile)){
|
||||
logdata <- read_feather(args$outfile)
|
||||
logdata <- rbind(logdata,as.data.table(outline))
|
||||
} else {
|
||||
logdata <- as.data.table(outline)
|
||||
}
|
||||
|
||||
print(outline)
|
||||
write_feather(logdata, args$outfile)
|
||||
unlock(outfile_lock)
|
@ -17,12 +17,12 @@ example_1.feather: example_1_jobs
|
||||
sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 example_1_jobs
|
||||
|
||||
example_2_jobs: example_2.R
|
||||
grid_sweep.py --command "Rscript example_2.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2.feather"]}' --outfile example_2_jobs
|
||||
grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2.feather"]}' --outfile example_2_jobs
|
||||
|
||||
example_2.feather: example_2_jobs
|
||||
rm -f example_2.feather
|
||||
sbatch --wait --verbose --array=1-3000 run_simulation.sbatch 0 example_2_jobs
|
||||
# sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 example_2_jobs
|
||||
sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 example_2_jobs
|
||||
|
||||
example_2_B_jobs: example_2_B.R
|
||||
grid_sweep.py --command "Rscript example_2_B.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2_B.feather"]}' --outfile example_2_B_jobs
|
||||
|
@ -4,9 +4,164 @@ options(amelia.parallel="no",
|
||||
amelia.ncpus=1)
|
||||
library(Amelia)
|
||||
library(Zelig)
|
||||
library(stats4)
|
||||
|
||||
|
||||
## This uses the pseudolikelihood approach from Carroll page 349.
|
||||
## assumes MAR
|
||||
## assumes differential error, but that only depends on Y
|
||||
## inefficient, because pseudolikelihood
|
||||
logistic.correction.pseudo <- function(df){
|
||||
p1.est <- mean(df[w_pred==1]$y.obs==1,na.rm=T)
|
||||
p0.est <- mean(df[w_pred==0]$y.obs==0,na.rm=T)
|
||||
|
||||
nll <- function(B0, Bxy, Bgy){
|
||||
probs <- (1 - p0.est) + (p1.est + p0.est - 1)*plogis(B0 + Bxy * df$x + Bgy * df$g)
|
||||
|
||||
part1 = sum(log(probs[df$w_pred == 1]))
|
||||
part2 = sum(log(1-probs[df$w_pred == 0]))
|
||||
|
||||
return(-1*(part1 + part2))
|
||||
}
|
||||
|
||||
mlefit <- stats4::mle(minuslogl = nll, start = list(B0=0, Bxy=0.0, Bgy=0.0))
|
||||
return(mlefit)
|
||||
|
||||
}
|
||||
|
||||
## This uses the likelihood approach from Carroll page 353.
|
||||
## assumes that we have a good measurement error model
|
||||
logistic.correction.liklihood <- function(df){
|
||||
|
||||
## liklihood for observed responses
|
||||
nll <- function(B0, Bxy, Bgy, gamma0, gamma_y, gamma_g){
|
||||
df.obs <- df[!is.na(y.obs)]
|
||||
p.y.obs <- plogis(B0 + Bxy * df.obs$x + Bgy*df.obs$g)
|
||||
p.y.obs[df.obs$y==0] <- 1-p.y.obs[df.obs$y==0]
|
||||
p.s.obs <- plogis(gamma0 + gamma_y * df.obs$y + gamma_g*df.obs$g)
|
||||
p.s.obs[df.obs$w_pred==0] <- 1 - p.s.obs[df.obs$w_pred==0]
|
||||
|
||||
p.obs <- p.s.obs * p.y.obs
|
||||
|
||||
df.unobs <- df[is.na(y.obs)]
|
||||
|
||||
p.unobs.1 <- plogis(B0 + Bxy * df.unobs$x + Bgy*df.unobs$g)*plogis(gamma0 + gamma_y + gamma_g*df.unobs$g)
|
||||
p.unobs.0 <- (1-plogis(B0 + Bxy * df.unobs$x + Bgy*df.unobs$g))*plogis(gamma0 + gamma_g*df.unobs$g)
|
||||
p.unobs <- p.unobs.1 + p.unobs.0
|
||||
p.unobs[df.unobs$w_pred==0] <- 1 - p.unobs[df.unobs$w_pred==0]
|
||||
|
||||
p <- c(p.obs, p.unobs)
|
||||
|
||||
return(-1*(sum(log(p))))
|
||||
}
|
||||
|
||||
mlefit <- stats4::mle(minuslogl = nll, start = list(B0=1, Bxy=0,Bgy=0, gamma0=5, gamma_y=0, gamma_g=0))
|
||||
|
||||
return(mlefit)
|
||||
}
|
||||
|
||||
|
||||
logistic <- function(x) {1/(1+exp(-1*x))}
|
||||
|
||||
run_simulation_depvar <- function(df, result){
|
||||
|
||||
accuracy <- df[,mean(w_pred==y)]
|
||||
result <- append(result, list(accuracy=accuracy))
|
||||
|
||||
(model.true <- glm(y ~ x + g, data=df,family=binomial(link='logit')))
|
||||
true.ci.Bxy <- confint(model.true)['x',]
|
||||
true.ci.Bgy <- confint(model.true)['g',]
|
||||
|
||||
result <- append(result, list(Bxy.est.true=coef(model.true)['x'],
|
||||
Bgy.est.true=coef(model.true)['g'],
|
||||
Bxy.ci.upper.true = true.ci.Bxy[2],
|
||||
Bxy.ci.lower.true = true.ci.Bxy[1],
|
||||
Bgy.ci.upper.true = true.ci.Bgy[2],
|
||||
Bgy.ci.lower.true = true.ci.Bgy[1]))
|
||||
|
||||
(model.feasible <- glm(y.obs~x+g,data=df,family=binomial(link='logit')))
|
||||
|
||||
feasible.ci.Bxy <- confint(model.feasible)['x',]
|
||||
result <- append(result, list(Bxy.est.feasible=coef(model.feasible)['x'],
|
||||
Bxy.ci.upper.feasible = feasible.ci.Bxy[2],
|
||||
Bxy.ci.lower.feasible = feasible.ci.Bxy[1]))
|
||||
|
||||
feasible.ci.Bgy <- confint(model.feasible)['g',]
|
||||
result <- append(result, list(Bgy.est.feasible=coef(model.feasible)['g'],
|
||||
Bgy.ci.upper.feasible = feasible.ci.Bgy[2],
|
||||
Bgy.ci.lower.feasible = feasible.ci.Bgy[1]))
|
||||
|
||||
(model.naive <- glm(w_pred~x+g, data=df, family=binomial(link='logit')))
|
||||
|
||||
naive.ci.Bxy <- confint(model.naive)['x',]
|
||||
naive.ci.Bgy <- confint(model.naive)['g',]
|
||||
|
||||
result <- append(result, list(Bxy.est.naive=coef(model.naive)['x'],
|
||||
Bgy.est.naive=coef(model.naive)['g'],
|
||||
Bxy.ci.upper.naive = naive.ci.Bxy[2],
|
||||
Bxy.ci.lower.naive = naive.ci.Bxy[1],
|
||||
Bgy.ci.upper.naive = naive.ci.Bgy[2],
|
||||
Bgy.ci.lower.naive = naive.ci.Bgy[1]))
|
||||
|
||||
|
||||
(model.naive.cont <- lm(w~x+g, data=df))
|
||||
naivecont.ci.Bxy <- confint(model.naive.cont)['x',]
|
||||
naivecont.ci.Bgy <- confint(model.naive.cont)['g',]
|
||||
|
||||
## my implementatoin of liklihood based correction
|
||||
mod.caroll.lik <- logistic.correction.liklihood(df)
|
||||
coef <- coef(mod.caroll.lik)
|
||||
ci <- confint(mod.caroll.lik)
|
||||
|
||||
result <- append(result,
|
||||
list(Bxy.est.mle = coef['Bxy'],
|
||||
Bxy.ci.upper.mle = ci['Bxy','97.5 %'],
|
||||
Bxy.ci.lower.mle = ci['Bxy','2.5 %'],
|
||||
Bgy.est.mle = coef['Bgy'],
|
||||
Bgy.ci.upper.mle = ci['Bgy','97.5 %'],
|
||||
Bgy.ci.lower.mle = ci['Bgy','2.5 %']))
|
||||
|
||||
|
||||
## my implementatoin of liklihood based correction
|
||||
mod.caroll.pseudo <- logistic.correction.pseudo(df)
|
||||
coef <- coef(mod.caroll.pseudo)
|
||||
ci <- confint(mod.caroll.pseudo)
|
||||
|
||||
result <- append(result,
|
||||
list(Bxy.est.pseudo = coef['Bxy'],
|
||||
Bxy.ci.upper.pseudo = ci['Bxy','97.5 %'],
|
||||
Bxy.ci.lower.pseudo = ci['Bxy','2.5 %'],
|
||||
Bgy.est.pseudo = coef['Bgy'],
|
||||
Bgy.ci.upper.pseudo = ci['Bgy','97.5 %'],
|
||||
Bgy.ci.lower.pseudo = ci['Bgy','2.5 %']))
|
||||
|
||||
|
||||
# amelia says use normal distribution for binary variables.
|
||||
amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('y','ystar','w_pred'))
|
||||
mod.amelia.k <- zelig(y.obs~x+g, model='ls', data=amelia.out.k$imputations, cite=FALSE)
|
||||
(coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
|
||||
|
||||
est.x.mi <- coefse['x','Estimate']
|
||||
est.x.se <- coefse['x','Std.Error']
|
||||
result <- append(result,
|
||||
list(Bxy.est.amelia.full = est.x.mi,
|
||||
Bxy.ci.upper.amelia.full = est.x.mi + 1.96 * est.x.se,
|
||||
Bxy.ci.lower.amelia.full = est.x.mi - 1.96 * est.x.se
|
||||
))
|
||||
|
||||
est.g.mi <- coefse['g','Estimate']
|
||||
est.g.se <- coefse['g','Std.Error']
|
||||
|
||||
result <- append(result,
|
||||
list(Bgy.est.amelia.full = est.g.mi,
|
||||
Bgy.ci.upper.amelia.full = est.g.mi + 1.96 * est.g.se,
|
||||
Bgy.ci.lower.amelia.full = est.g.mi - 1.96 * est.g.se
|
||||
))
|
||||
|
||||
return(result)
|
||||
|
||||
}
|
||||
|
||||
run_simulation <- function(df, result){
|
||||
|
||||
accuracy <- df[,mean(w_pred==x)]
|
||||
@ -48,19 +203,7 @@ run_simulation <- function(df, result){
|
||||
Bgy.ci.lower.naive = naive.ci.Bgy[1]))
|
||||
|
||||
|
||||
## multiple imputation when k is observed
|
||||
## amelia does great at this one.
|
||||
noms <- c()
|
||||
if(length(unique(df$x.obs)) <=2){
|
||||
noms <- c(noms, 'x.obs')
|
||||
}
|
||||
|
||||
if(length(unique(df$g)) <=2){
|
||||
noms <- c(noms, 'g')
|
||||
}
|
||||
|
||||
|
||||
amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred'),noms=noms)
|
||||
amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred'))
|
||||
mod.amelia.k <- zelig(y~x.obs+g, model='ls', data=amelia.out.k$imputations, cite=FALSE)
|
||||
(coefse <- combine_coef_se(mod.amelia.k, messages=FALSE))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user