update simulations code
This commit is contained in:
		
							parent
							
								
									b8d2048cc5
								
							
						
					
					
						commit
						acb119418a
					
				| @ -79,6 +79,7 @@ parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) | ||||
| parser <- add_argument(parser, "--Bxy", help='Effect of x on y', default=0.3) | ||||
| parser <- add_argument(parser, "--Px", help='Base rate of x', default=0.5) | ||||
| parser <- add_argument(parser, "--confint_method", help='method for approximating confidence intervals', default='quad') | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| B0 <- 0 | ||||
| @ -89,9 +90,9 @@ Bzx <- args$Bzx | ||||
| 
 | ||||
| df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, Px, seed=args$seed + 500, y_explained_variance = args$y_explained_variance,  prediction_accuracy=args$prediction_accuracy) | ||||
| 
 | ||||
| result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'Px'=Px, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='') | ||||
| result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, 'Bzx'=Bzx, 'Bzy'=Bzy, 'Px'=Px, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, confint_method=args$confint_method,error='') | ||||
| 
 | ||||
| outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula)) | ||||
| outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula),confint_method=args$confint_method) | ||||
|      | ||||
| outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
| if(file.exists(args$outfile)){ | ||||
|  | ||||
| @ -141,7 +141,7 @@ parser <- add_argument(parser, "--y_bias", help='coefficient of y on the probabi | ||||
| parser <- add_argument(parser, "--z_bias", help='coefficient of z on the probability a classification is correct', default=0) | ||||
| parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z") | ||||
| parser <- add_argument(parser, "--Px", help='base rate of x', default=0.5) | ||||
| 
 | ||||
| parser <- add_argument(parser, "--confint_method", help='method for approximating confidence intervals', default='quad') | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| B0 <- 0 | ||||
| @ -159,9 +159,9 @@ if(args$m < args$N){ | ||||
|     ## pc.df <- pc(suffStat=list(C=cor(df.pc),n=nrow(df.pc)),indepTest=gaussCItest,labels=names(df.pc),alpha=0.05) | ||||
|     ## plot(pc.df) | ||||
| 
 | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, 'Bzx'=args$Bzx, 'Bzy'=Bzy, 'Px'=Px, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='') | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, 'Bzx'=args$Bzx, 'Bzy'=Bzy, 'Px'=Px, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, confint_method=args$confint_method, error='') | ||||
| 
 | ||||
|     outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula)) | ||||
|     outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula),confint_method=args$confint_method) | ||||
|      | ||||
|     | ||||
|  outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
|  | ||||
| @ -79,6 +79,7 @@ parser <- add_argument(parser, "--Bzx", help='coeffficient of z on x', default=- | ||||
| parser <- add_argument(parser, "--B0", help='Base rate of y', default=0.5) | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y") | ||||
| parser <- add_argument(parser, "--confint_method", help='method for getting confidence intervals', default="quad") | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| @ -91,9 +92,9 @@ if(args$m < args$N){ | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, args$seed, args$prediction_accuracy) | ||||
| 
 | ||||
| #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'Bzx'=Bzx,'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'Bzx'=Bzx,'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula, 'confint_method'=args$confint_method) | ||||
| 
 | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula)) | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula), confint_method=args$confint_method) | ||||
| 
 | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
| 
 | ||||
|  | ||||
| @ -31,12 +31,12 @@ source("simulation_base.R") | ||||
| 
 | ||||
| ## one way to do it is by adding correlation to x.obs and y that isn't in w. | ||||
| ## in other words, the model is missing an important feature of x.obs that's related to y. | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, z_bias=-0.75){ | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzy, Bxz=0, seed=0, prediction_accuracy=0.73, z_bias=-0.75){ | ||||
|     set.seed(seed) | ||||
| 
 | ||||
|     # make w and y dependent | ||||
|     z <- rnorm(N,sd=0.5) | ||||
|     x <- rbinom(N,1,0.5) | ||||
|     x <- rbinom(N,1,plogis(Bxz*z)) | ||||
| 
 | ||||
|     ystar <- Bzy * z + Bxy * x + B0 | ||||
|     y <- rbinom(N,1,plogis(ystar)) | ||||
| @ -70,30 +70,32 @@ parser <- add_argument(parser, "--N", default=1000, help="number of observations | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_4.feather') | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.79) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.75) | ||||
| ## parser <- add_argument(parser, "--z_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) | ||||
| ## parser <- add_argument(parser, "--z_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) | ||||
| parser <- add_argument(parser, "--z_bias", help='how is the classifier biased?', default=1.5) | ||||
| parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.1) | ||||
| parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.1) | ||||
| parser <- add_argument(parser, "--B0", help='coeffficient of z on y', default=-0.1) | ||||
| parser <- add_argument(parser, "--z_bias", help='how is the classifier biased?', default=-0.5) | ||||
| parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.7) | ||||
| parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.7) | ||||
| parser <- add_argument(parser, "--Bzx", help='coeffficient of z on y', default=1) | ||||
| parser <- add_argument(parser, "--B0", help='coeffficient of z on y', default=0) | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y+z") | ||||
| 
 | ||||
| parser <- add_argument(parser, "--confint_method", help='method for approximating confidence intervals', default='quad') | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| B0 <- args$B0 | ||||
| Bxy <- args$Bxy | ||||
| Bzy <- args$Bzy | ||||
| 
 | ||||
| Bzx <- args$Bzx | ||||
| 
 | ||||
| if(args$m < args$N){ | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$z_bias) | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzx, Bzy, args$seed, args$prediction_accuracy, args$z_bias) | ||||
| 
 | ||||
| #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'z_bias_y0'=args$z_bias_y0,'z_bias_y1'=args$z_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'z_bias'=args$z_bias,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
| #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy,'Bzx'=Bzx, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'z_bias_y0'=args$z_bias_y0,'z_bias_y1'=args$z_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy,'Bzx'=Bzx, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'z_bias'=args$z_bias,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula, confint_method=args$confint_method) | ||||
| 
 | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula)) | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula),confint_method=args$confint_method) | ||||
|     print(outline$error.cor.z) | ||||
| 
 | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
| 
 | ||||
|  | ||||
| @ -8,7 +8,7 @@ explained_variances=[0.1] | ||||
| 
 | ||||
| all:main supplement | ||||
| main:remembr.RDS  | ||||
| supplement:robustness_1.RDS robustness_1_dv.RDS robustness_2.RDS robustness_2_dv.RDS robustness_3.RDS robustness_3_dv.RDS robustness_4.RDS robustness_4_dv.RDS  | ||||
| supplement:robustness_1.RDS robustness_1_dv.RDS robustness_2.RDS robustness_2_dv.RDS robustness_3.RDS robustness_3_dv.RDS robustness_3_proflik.RDS robustness_3_dv_proflik.RDS robustness_4.RDS robustness_4_dv.RDS  | ||||
| 
 | ||||
| srun=sbatch --wait --verbose run_job.sbatch | ||||
| 
 | ||||
| @ -30,7 +30,7 @@ example_1_jobs: 01_two_covariates.R simulation_base.R grid_sweep.py pl_methods.R | ||||
| example_1.feather: example_1_jobs  | ||||
| 	rm -f example_1.feather | ||||
| 	sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_1_jobs | ||||
| 	sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 example_1_jobs | ||||
| 	sbatch --wait --verbose --array=1001-2000 run_simulation.sbatch 0 example_1_jobs | ||||
| 	sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_1_jobs | ||||
| 	sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 example_1_jobs | ||||
| 	sbatch --wait --verbose --array=4001-$(shell cat example_1_jobs | wc -l)  run_simulation.sbatch 0 example_1_jobs | ||||
| @ -41,10 +41,10 @@ example_2_jobs: 02_indep_differential.R simulation_base.R grid_sweep.py pl_metho | ||||
| example_2.feather: example_2_jobs  | ||||
| 	rm -f example_2.feather | ||||
| 	sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_2_jobs | ||||
| 	sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 example_2_jobs | ||||
| 	sbatch --wait --verbose --array=1001-2000 run_simulation.sbatch 0 example_2_jobs | ||||
| 	sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_2_jobs | ||||
| 	sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 example_2_jobs | ||||
| 	sbatch --wait --verbose --array=4001-$(shell cat example_2_jobs | wc -l)  run_simulation.sbatch 0 example_2_jobs | ||||
| 	sbatch --wait --verbose --array=4001-$(shell cat example_2_jobs | wc -l) | ||||
| 
 | ||||
| 
 | ||||
| # example_2_B_jobs: example_2_B.R
 | ||||
| @ -55,23 +55,24 @@ example_2.feather: example_2_jobs | ||||
| # 	sbatch --wait --verbose --array=1-3000 run_simulation.sbatch 0 example_2_B_jobs
 | ||||
| 
 | ||||
| example_3_jobs: 03_depvar.R simulation_base.R grid_sweep.py pl_methods.R | ||||
| 	sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 03_depvar.R" --arg_dict '{"N":${Ns},"m":${ms}, "Bxy":[0.7],"Bzy":[-0.7],"seed":${seeds}, "outfile":["example_3.feather"], "y_explained_variance":${explained_variances}}' --outfile example_3_jobs | ||||
| 	sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 03_depvar.R" --arg_dict '{"N":${Ns},"m":${ms}, "Bxy":[0.7],"Bzy":[-0.7],"Bzx":[1],"seed":${seeds}, "outfile":["example_3.feather"], "y_explained_variance":${explained_variances}}' --outfile example_3_jobs | ||||
| 
 | ||||
| example_3.feather: example_3_jobs | ||||
| 	rm -f example_3.feather	 | ||||
| 	sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_3_jobs | ||||
| 	sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 example_3_jobs | ||||
| 	sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_3_jobs | ||||
| 	sbatch --wait --verbose --array=1001-2000 run_simulation.sbatch 0 example_3_jobs | ||||
| 	 sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_3_jobs | ||||
| 	sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 example_3_jobs | ||||
| 	sbatch --wait --verbose --array=4001-$(shell cat example_3_jobs | wc -l)  run_simulation.sbatch 0 example_3_jobs | ||||
| 
 | ||||
| example_4_jobs: 04_depvar_differential.R simulation_base.R grid_sweep.py pl_methods.R | ||||
| 	sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 04_depvar_differential.R" --arg_dict '{"N":${Ns},"Bxy":[0.7],"Bzy":[-0.7],"m":${ms}, "seed":${seeds}, "outfile":["example_4.feather"], "z_bias":[0.3], "prediction_accuracy":[0.73]}' --outfile example_4_jobs | ||||
| 	sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 04_depvar_differential.R" --arg_dict '{"N":${Ns},"Bxy":[0.7],"Bzy":[-0.7],"Bzx":[1], "m":${ms}, "seed":${seeds}, "outfile":["example_4.feather"], "z_bias":[-0.5], "prediction_accuracy":[0.73]}' --outfile example_4_jobs | ||||
| 
 | ||||
| example_4.feather: example_4_jobs | ||||
| 	rm -f example_4.feather | ||||
| 	sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 example_4_jobs | ||||
| 	sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 example_4_jobs | ||||
| 	sbatch --wait --verbose --array=2001-3001 run_simulation.sbatch 0 example_4_jobs | ||||
| 	sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 example_4_jobs | ||||
| 	sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 example_4_jobs | ||||
| 	sbatch --wait --verbose --array=4001-$(shell cat example_4_jobs | wc -l)  run_simulation.sbatch 0 example_4_jobs | ||||
| @ -86,63 +87,73 @@ remembr.RDS:example_1.feather example_2.feather example_3.feather example_4.feat | ||||
| 	${srun} Rscript plot_dv_example.R --infile example_4.feather --name "plot.df.example.4" | ||||
| 
 | ||||
| 
 | ||||
| robustness_1_jobs: 02_indep_differential.R simulation_base.R grid_sweep.py | ||||
| 	sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_1.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~1"]}' --outfile robustness_1_jobs | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| START=0 | ||||
| STEP=1000 | ||||
| ONE=1 | ||||
| 
 | ||||
| robustness_1.feather: robustness_1_jobs | ||||
| 	$(eval END_1!=cat robustness_1_jobs | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	rm -f robustness_1.feather | ||||
| 	sbatch --wait --verbose --array=1-1000  run_simulation.sbatch 0 robustness_1_jobs | ||||
| 	sbatch --wait --verbose --array=1001-2000  run_simulation.sbatch 0 robustness_1_jobs | ||||
| 	sbatch --wait --verbose --array=2001-3000  run_simulation.sbatch 0 robustness_1_jobs | ||||
| 	sbatch --wait --verbose --array=3001-4000  run_simulation.sbatch 0 robustness_1_jobs | ||||
| 	sbatch --wait --verbose --array=4001-$(shell cat robustness_1_jobs | wc -l)  run_simulation.sbatch 0 robustness_1_jobs | ||||
| robustness_Ns=[1000,5000] | ||||
| robustness_robustness_ms=[100,200] | ||||
| 
 | ||||
| 	$(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_jobs;) | ||||
| #in robustness 1 / example 2 misclassification is correlated with Y.
 | ||||
| robustness_1_jobs_p1: 02_indep_differential.R simulation_base.R grid_sweep.py | ||||
| 	sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":[1000],"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_1.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3,0],"Bxy":[0.3],"Bzx":[1,0], "outcome_formula":["y~x+z"], "z_bias":[0, 0.5], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~1"]}' --outfile robustness_1_jobs_p1 | ||||
| 
 | ||||
| robustness_1.RDS: robustness_1.feather | ||||
| robustness_1_jobs_p2: 02_indep_differential.R simulation_base.R grid_sweep.py | ||||
| 	sbatch --wait --verbose run_job.sbatch grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":[5000],"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_1.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3,0],"Bxy":[0.3],"Bzx":[1,0], "outcome_formula":["y~x+z"], "z_bias":[0, 0.5], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~1"]}' --outfile robustness_1_jobs_p2 | ||||
| 
 | ||||
| robustness_1.feather: robustness_1_jobs_p1 robustness_1_jobs_p2 | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_1_jobs_p1 | wc -l) | ||||
| 	$(eval ITEROBUSTNESS_MS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(eval END_2!=cat robustness_1_jobs_p2 | wc -l) | ||||
| 	$(eval ITEROBUSTNESS_MS_2!=seq $(START) $(STEP) $(END_2)) | ||||
| 
 | ||||
| 	$(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_jobs_p1;) | ||||
| 	$(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_jobs_p2;) | ||||
| 
 | ||||
| robustness_1.RDS: robustness_1.feather summarize_estimator.R | ||||
| 	rm -f robustness_1.RDS | ||||
| 	${srun} Rscript plot_example.R --infile $< --name "robustness_1" --remember-file $@ | ||||
| 
 | ||||
| robustness_1_dv_jobs: simulation_base.R 04_depvar_differential.R grid_sweep.py | ||||
| 	${srun} grid_sweep.py --command 'Rscript 04_depvar_differential.R' --arg_dict '{"N":${Ns},"Bxy":[0.7],"Bzy":[-0.7],"m":${ms}, "seed":${seeds}, "outfile":["robustness_1_dv.feather"], "proxy_formula":["w_pred~y"],"z_bias":[0.5]}' --outfile robustness_1_dv_jobs | ||||
| # when Bzy is 0 and zbias is not zero, we have the case where P(W|Y,X,Z) has an omitted variable that is conditionanlly independent from Y.  Note that X and Z are independent in this scenario.
 | ||||
| robustness_1_dv_jobs_p1: simulation_base.R 04_depvar_differential.R grid_sweep.py | ||||
| 	${srun} grid_sweep.py --command 'Rscript 04_depvar_differential.R' --arg_dict '{"N":[1000],"Bzx":[1], "Bxy":[0.7,0],"Bzy":[-0.7,0],"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_1_dv.feather"], "proxy_formula":["w_pred~y"],"z_bias":[-0.5]}' --outfile robustness_1_dv_jobs_p1 | ||||
| 
 | ||||
| robustness_1_dv.feather: robustness_1_dv_jobs | ||||
| 	rm -f robustness_1_dv.feather | ||||
| 	$(eval END_1!=cat robustness_1_dv_jobs | wc -l) | ||||
| robustness_1_dv_jobs_p2: simulation_base.R 04_depvar_differential.R grid_sweep.py | ||||
| 	${srun} grid_sweep.py --command 'Rscript 04_depvar_differential.R' --arg_dict '{"N":[5000],"Bzx":[1], "Bxy":[0.7,0],"Bzy":[-0.7,0],"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_1_dv.feather"], "proxy_formula":["w_pred~y"],"z_bias":[-0.5]}' --outfile robustness_1_dv_jobs_p2 | ||||
| 
 | ||||
| robustness_1_dv.feather: robustness_1_dv_jobs_p1 robustness_1_dv_jobs_p2 | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_1_dv_jobs_p1 | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_dv_jobs;) | ||||
| 	$(eval END_2!=cat robustness_1_dv_jobs_p2 | wc -l) | ||||
| 	$(eval ITEMS_2!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_dv_jobs_p1;) | ||||
| 	$(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_1_dv_jobs_p2;) | ||||
| 
 | ||||
| 
 | ||||
| robustness_1_dv.RDS: robustness_1_dv.feather | ||||
| robustness_1_dv.RDS: robustness_1_dv.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript plot_dv_example.R --infile $< --name "robustness_1_dv" --remember-file $@ | ||||
| 
 | ||||
| 
 | ||||
| robustness_2_jobs_p1: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.60,0.65]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.60,0.65]}' --outfile $@ | ||||
| 
 | ||||
| robustness_2_jobs_p2: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.70,0.75]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.70,0.75]}' --outfile $@ | ||||
| 
 | ||||
| robustness_2_jobs_p3: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.80,0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.80,0.85]}' --outfile $@ | ||||
| 
 | ||||
| robustness_2_jobs_p4: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.90,0.95]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.90,0.95]}' --outfile $@ | ||||
| 
 | ||||
| robustness_2.feather: robustness_2_jobs_p1 robustness_2_jobs_p2 robustness_2_jobs_p3 robustness_2_jobs_p4 | ||||
| 	rm $@ | ||||
| 	$(eval END_1!=cat robustness_2_jobs_p1 | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(eval END_2!=cat robustness_2_jobs_p2 | wc -l) | ||||
| @ -157,27 +168,28 @@ robustness_2.feather: robustness_2_jobs_p1 robustness_2_jobs_p2 robustness_2_job | ||||
| 	$(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_jobs_p3;) | ||||
| 	$(foreach item,$(ITEMS_4),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_jobs_p4;) | ||||
| 
 | ||||
| robustness_2.RDS: plot_example.R robustness_2.feather  | ||||
| robustness_2.RDS: plot_example.R robustness_2.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript $< --infile $(word 2, $^) --name "robustness_2" --remember-file $@ | ||||
| 
 | ||||
| robustness_2_dv_jobs_p1: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.60,0.65]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.60,0.65]}' --outfile $@ | ||||
| 
 | ||||
| robustness_2_dv_jobs_p2: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.70,0.75]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.70,0.75]}' --outfile $@ | ||||
| 
 | ||||
| robustness_2_dv_jobs_p3: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.80,0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.80,0.85]}' --outfile $@ | ||||
| 
 | ||||
| robustness_2_dv_jobs_p4: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.90,0.95]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_2_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.90,0.95]}' --outfile $@ | ||||
| 
 | ||||
| robustness_2_dv.feather: robustness_2_dv_jobs_p1 robustness_2_dv_jobs_p2 robustness_2_dv_jobs_p3 robustness_2_dv_jobs_p4 | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_2_dv_jobs_p1 | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(eval END_2!=cat robustness_2_dv_jobs_p2 | wc -l) | ||||
| @ -192,24 +204,40 @@ robustness_2_dv.feather: robustness_2_dv_jobs_p1 robustness_2_dv_jobs_p2 robustn | ||||
| 	$(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_dv_jobs_p3;) | ||||
| 	$(foreach item,$(ITEMS_4),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_2_dv_jobs_p4;) | ||||
| 
 | ||||
| robustness_2_dv.RDS: plot_example.R robustness_2_dv.feather  | ||||
| robustness_2_dv.RDS: plot_dv_example.R robustness_2_dv.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript $< --infile $(word 2, $^) --name "robustness_2_dv" --remember-file $@ | ||||
| 
 | ||||
| 
 | ||||
| robustness_3_proflik_jobs: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":[1000],"m":[100], "seed":${seeds}, "outfile":["robustness_3_proflik.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"Px":[0.5,0.6,0.7,0.8,0.9,0.95], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85], "confint_method":['spline']}' --outfile $@ | ||||
| 
 | ||||
| robustness_3_proflik.feather: robustness_3_proflik_jobs | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_3_proflik_jobs | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_proflik_jobs;) | ||||
| 
 | ||||
| robustness_3_proflik.RDS: plot_example.R robustness_3_proflik.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript $< --infile $(word 2, $^) --name "robustness_3_proflik" --remember-file $@ | ||||
| 
 | ||||
| 
 | ||||
| robustness_3_jobs_p1: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3],"Px":[0.5,0.6], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"Px":[0.5,0.6], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 
 | ||||
| robustness_3_jobs_p2: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3],"Px":[0.7,0.8], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"Px":[0.7,0.8], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 
 | ||||
| robustness_3_jobs_p3: grid_sweep.py 01_two_covariates.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3],"Px":[0.9,0.95], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 01_two_covariates.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"Px":[0.9,0.95], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 
 | ||||
| robustness_3.feather: robustness_3_jobs_p1 robustness_3_jobs_p2 robustness_3_jobs_p3 | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_3_jobs_p1 | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(eval END_2!=cat robustness_3_jobs_p2 | wc -l) | ||||
| @ -221,26 +249,42 @@ robustness_3.feather: robustness_3_jobs_p1 robustness_3_jobs_p2 robustness_3_job | ||||
| 	$(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_jobs_p2;) | ||||
| 	$(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_jobs_p3;) | ||||
| 
 | ||||
| robustness_3.RDS: plot_example.R robustness_3.feather  | ||||
| robustness_3.RDS: plot_example.R robustness_3.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript $< --infile $(word 2, $^) --name "robustness_3" --remember-file $@ | ||||
| 
 | ||||
| robustness_3_dv_jobs_p1: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| robustness_3_dv_proflik_jobs: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_3_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3],"B0":[0.5,0.6], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":[1000],"m":[100], "seed":${seeds}, "outfile":["robustness_3_dv_proflik.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"B0":[0,0.405,0.846,1.386,2.197,2.944], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"confint_method":['spline']}' --outfile $@ | ||||
| 
 | ||||
| robustness_3_dv_proflik.feather: robustness_3_dv_proflik_jobs | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_3_dv_proflik_jobs | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_dv_proflik_jobs;) | ||||
| 
 | ||||
| robustness_3_dv_proflik.RDS: plot_dv_example.R robustness_3_dv_proflik.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript $< --infile $(word 2, $^) --name "robustness_3_dv_proflik" --remember-file $@ | ||||
| 
 | ||||
| 
 | ||||
|  robustness_3_dv_jobs_p1: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"B0":[0,0.405], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| robustness_3_dv_jobs_p2: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_3_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3],"B0":[0.7,0.8], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1],"B0":[0.847,1.386], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 
 | ||||
| 
 | ||||
| robustness_3_dv_jobs_p3: grid_sweep.py 03_depvar.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_3_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "B0":[0.9,0.95], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 03_depvar.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_3_dv.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "B0":[2.197,2.944], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85]}' --outfile $@ | ||||
| 
 | ||||
| robustness_3_dv.feather: robustness_3_dv_jobs_p1 robustness_3_dv_jobs_p2 robustness_3_dv_jobs_p3 | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_3_dv_jobs_p1 | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(eval END_2!=cat robustness_3_dv_jobs_p2 | wc -l) | ||||
| @ -253,28 +297,26 @@ robustness_3_dv.feather: robustness_3_dv_jobs_p1 robustness_3_dv_jobs_p2 robustn | ||||
| 	 $(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_3_dv_jobs_p3;) | ||||
| 
 | ||||
| 
 | ||||
| robustness_3_dv.RDS: plot_dv_example.R robustness_3_dv.feather  | ||||
| robustness_3_dv.RDS: plot_dv_example.R robustness_3_dv.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript $< --infile $(word 2, $^) --name "robustness_3_dv" --remember-file $@ | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| robustness_4_jobs_p1: grid_sweep.py 02_indep_differential.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 02_indep_differential.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_4.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85],"y_bias":[-1,-0.85]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 02_indep_differential.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_4.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85],"y_bias":[-2.944,-2.197]}' --outfile $@ | ||||
| 
 | ||||
| robustness_4_jobs_p2: grid_sweep.py 02_indep_differential.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 02_indep_differential.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_4.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85], "y_bias":[-0.70,-0.55]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 02_indep_differential.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_4.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85], "y_bias":[-1.386,-0.846]}' --outfile $@ | ||||
| 
 | ||||
| robustness_4_jobs_p3: grid_sweep.py 02_indep_differential.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 02_indep_differential.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_4.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85],"y_bias":[-0.4,-0.25]}' --outfile $@ | ||||
| 
 | ||||
| robustness_4_jobs_p4: grid_sweep.py 02_indep_differential.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 02_indep_differential.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_4.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85],"y_bias":[-0.1,0]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 02_indep_differential.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_4.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[1], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y+x"], "truth_formula":["x~z"], "prediction_accuracy":[0.85],"y_bias":[-0.405,-0.25]}' --outfile $@ | ||||
| 
 | ||||
| robustness_4.feather: robustness_4_jobs_p1 robustness_4_jobs_p2 robustness_4_jobs_p3 | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_4_jobs_p1 | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(eval END_2!=cat robustness_4_jobs_p2 | wc -l) | ||||
| @ -286,48 +328,52 @@ robustness_4.feather: robustness_4_jobs_p1 robustness_4_jobs_p2 robustness_4_job | ||||
| 	$(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_4_jobs_p2;) | ||||
| 	$(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_4_jobs_p3;) | ||||
| 
 | ||||
| robustness_4.RDS: plot_example.R robustness_4.feather  | ||||
| robustness_4.RDS: plot_example.R robustness_4.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript $< --infile $(word 2, $^) --name "robustness_4" --remember-file $@ | ||||
| 
 | ||||
| 
 | ||||
| # '{"N":${Ns},"Bxy":[0.7],"Bzy":[-0.7],"m":${ms}, "seed":${seeds}, "outfile":["example_4.feather"], "z_bias":[0.5]}' --outfile example_4_jobs
 | ||||
| # '{"N":${robustness_Ns},"Bxy":[0.7],"Bzy":[-0.7],"m":${ms}, "seed":${seeds}, "outfile":["example_4.feather"], "z_bias":[0.5]}' --example_4_jobs
 | ||||
| 
 | ||||
| robustness_4_dv_jobs_p1: grid_sweep.py 04_depvar_differential.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 04_depvar_differential.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_4_dv.feather"], "Bzy":[-0.7],"Bxy":[0.7], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"z_bias":[0,0.1]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 04_depvar_differential.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_4_dv.feather"], "Bzy":[-0.7],"Bxy":[0.7],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"z_bias":[0,0.1]}' --outfile $@ | ||||
| 
 | ||||
| robustness_4_dv_jobs_p2: grid_sweep.py 04_depvar_differential.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 04_depvar_differential.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_4_dv.feather"], "Bzy":[-0.7],"Bxy":[0.7], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"z_bias":[0.25,0.4]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 04_depvar_differential.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_4_dv.feather"], "Bzy":[-0.7],"Bxy":[0.7],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"z_bias":[0.25,0.405]}' --outfile $@ | ||||
| 
 | ||||
| robustness_4_dv_jobs_p3: grid_sweep.py 04_depvar_differential.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 04_depvar_differential.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_4_dv.feather"], "Bzy":[-0.7],"Bxy":[0.7],"outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"z_bias":[0.55,0.7]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 04_depvar_differential.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_4_dv.feather"], "Bzy":[-0.7],"Bxy":[0.7],"Bzx":[1],"outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"z_bias":[0.846,1.386]}' --outfile $@ | ||||
| 
 | ||||
| robustness_4_dv_jobs_p4: grid_sweep.py 04_depvar_differential.R simulation_base.R grid_sweep.py | ||||
| 	rm -f $@ | ||||
| 	${srun} $< --command 'Rscript 04_depvar_differential.R'  --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["robustness_4_dv.feather"],"Bzy":[-0.7],"Bxy":[0.7], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"z_bias":[0.85,1]}' --outfile $@ | ||||
| 	${srun} $< --command 'Rscript 04_depvar_differential.R'  --arg_dict '{"N":${robustness_Ns},"m":${robustness_ms}, "seed":${seeds}, "outfile":["robustness_4_dv.feather"],"Bzy":[-0.7],"Bxy":[0.7],"Bzx":[1], "outcome_formula":["y~x+z"], "prediction_accuracy":[0.85],"z_bias":[2.197,2.944]}' --outfile $@ | ||||
| 
 | ||||
| robustness_4_dv.feather: robustness_4_dv_jobs_p1 robustness_4_dv_jobs_p2 robustness_4_dv_jobs_p3 | ||||
| robustness_4_dv.feather: robustness_4_dv_jobs_p1 robustness_4_dv_jobs_p2 robustness_4_dv_jobs_p3 robustness_4_dv_jobs_p4 | ||||
| 	rm -f $@ | ||||
| 	$(eval END_1!=cat robustness_4_dv_jobs_p1 | wc -l) | ||||
| 	$(eval ITEMS_1!=seq $(START) $(STEP) $(END_1)) | ||||
| 	$(eval END_2!=cat robustness_4_dv_p2 | wc -l) | ||||
| 	$(eval ITEMS_2!=seq $(START) $(STEP) $(END_2)) | ||||
| 	$(eval END_3!=cat robustness_4_dv_p3 | wc -l) | ||||
| 	$(eval ITEMS_3!=seq $(START) $(STEP) $(END_3)) | ||||
| 	$(eval END_3!=cat robustness_4_dv_p4 | wc -l) | ||||
| 	$(eval ITEMS_3!=seq $(START) $(STEP) $(END_3)) | ||||
| 
 | ||||
| 
 | ||||
| 	$(foreach item,$(ITEMS_1),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_4_dv_jobs_p1;) | ||||
| 	$(foreach item,$(ITEMS_2),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_4_dv_jobs_p2;) | ||||
| 	$(foreach item,$(ITEMS_3),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_4_dv_jobs_p3;) | ||||
| 	$(foreach item,$(ITEMS_4),sbatch --wait --verbose --array=$(shell expr $(item) + $(ONE))-$(shell expr $(item) + $(STEP)) run_simulation.sbatch 0 robustness_4_dv_jobs_p4;) | ||||
| 
 | ||||
| 
 | ||||
| robustness_4_dv.RDS: plot_dv_example.R robustness_4_dv.feather  | ||||
| robustness_4_dv.RDS: plot_dv_example.R robustness_4_dv.feather summarize_estimator.R | ||||
| 	rm -f $@ | ||||
| 	${srun} Rscript $< --infile $(word 2, $^) --name "robustness_4" --remember-file $@ | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| clean_main: | ||||
| 	rm -f remembr.RDS | ||||
| 	rm -f example_1_jobs | ||||
| @ -359,5 +405,4 @@ clean_all: | ||||
| # 	sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 example_2_B_mecor_jobs
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| .PHONY: supplement | ||||
|  | ||||
| @ -1,8 +1,8 @@ | ||||
| #!/bin/bash | ||||
| #SBATCH --job-name="simulate measurement error models" | ||||
| ## Allocation Definition | ||||
| #SBATCH --account=comdata | ||||
| #SBATCH --partition=compute-bigmem | ||||
| #SBATCH --account=comdata-ckpt | ||||
| #SBATCH --partition=ckpt | ||||
| ## Resources | ||||
| #SBATCH --nodes=1     | ||||
| ## Walltime (4 hours) | ||||
| @ -14,4 +14,5 @@ | ||||
| #SBATCH --chdir /gscratch/comdata/users/nathante/ml_measurement_error_public/simulations | ||||
| #SBATCH --output=simulation_jobs/%A_%a.out | ||||
| #SBATCH --error=simulation_jobs/%A_%a.err | ||||
| echo "$@" | ||||
| "$@" | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user