24_deb_pkg_gov/R/readmeRDDAnalysis.R

95 lines
4.7 KiB
R
Raw Permalink Normal View History

2024-04-15 14:38:41 +00:00
# this is the file with the lmer multi-level rddAnalysis
2024-04-16 00:36:11 +00:00
library(tidyverse)
2024-04-19 19:30:41 +00:00
library(plyr)
2024-04-15 14:38:41 +00:00
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
# 1 preprocessing
2024-04-19 21:04:06 +00:00
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
2024-06-24 23:48:20 +00:00
col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
2024-04-15 14:38:41 +00:00
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
2024-04-16 16:43:32 +00:00
#filter out the windows of time that we're looking at
2024-04-15 14:38:41 +00:00
window_num <- 8
2024-04-21 03:13:13 +00:00
windowed_data <- expanded_data |>
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
mutate(D = ifelse(week > 27, 1, 0))
2024-04-20 16:09:35 +00:00
#scale the age numbers
2024-06-24 23:48:20 +00:00
windowed_data$scaled_project_age <- scale(windowed_data$age_in_days)
windowed_data$scaled_event_gap <- scale(windowed_data$event_gap)
windowed_data$week_offset <- windowed_data$week - 27
2024-05-13 04:22:14 +00:00
#break out the different types of commit actions that are studied
2024-04-21 03:13:13 +00:00
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
2024-05-13 04:22:14 +00:00
#log the dependent
2024-04-24 17:59:07 +00:00
all_actions_data$logged_count <- log(all_actions_data$count)
all_actions_data$log1p_count <- log1p(all_actions_data$count)
2024-06-13 18:40:27 +00:00
range(all_actions_data$log1p_count)
2024-08-24 22:04:46 +00:00
grouped_averages <- aggregate(all_actions_data$count, list(all_actions_data$upstream_vcs_link), mean)
quantile(grouped_averages$x)
2024-04-15 14:38:41 +00:00
# 3 rdd in lmer analysis
2024-04-16 16:43:32 +00:00
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
2024-04-22 15:41:14 +00:00
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
2024-05-13 04:22:14 +00:00
library(lme4)
2024-04-24 21:55:40 +00:00
library(optimx)
2024-05-07 23:40:38 +00:00
library(lattice)
2024-05-13 04:22:14 +00:00
#some more EDA to go between Poisson and neg binomial
2024-05-09 22:05:21 +00:00
var(all_actions_data$log1p_count) # 1.125429
mean (all_actions_data$log1p_count) # 0.6426873
2024-08-24 22:04:46 +00:00
sd(all_actions_data$log1p_count)
2024-06-13 18:40:27 +00:00
median(all_actions_data$log1p_count) #0
2024-05-10 19:11:24 +00:00
var(all_actions_data$count) # 268.4449
mean (all_actions_data$count) # 3.757298
2024-08-24 22:04:46 +00:00
sd (all_actions_data$count)
2024-06-13 18:40:27 +00:00
median(all_actions_data$count) # 0
2024-06-24 23:48:20 +00:00
print("fitting model")
#all_log1p_gmodel <- glmer.nb(log1p_count ~ D * week_offset+ scaled_project_age + scaled_event_gap + (D * week_offset | upstream_vcs_link), data=all_actions_data, nAGQ=1, control=glmerControl(optimizer="bobyqa",
# optCtrl=list(maxfun=1e5)))
2024-08-24 22:04:46 +00:00
#all_log1p_gmodel <- readRDS("final_models/0624_readme_all_rdd.rda")
2024-05-10 00:47:38 +00:00
summary(all_log1p_gmodel)
2024-06-24 23:48:20 +00:00
print("model fit")
#I grouped the ranef D effects on 0624
2024-05-10 19:11:24 +00:00
all_residuals <- residuals(all_log1p_gmodel)
qqnorm(all_residuals)
2024-05-09 23:40:33 +00:00
library(broom.mixed)
2024-05-10 19:11:24 +00:00
test_condvals <- broom.mixed::tidy(all_log1p_gmodel, effects = "ran_vals", conf.int = TRUE)
test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),]
2024-05-09 22:05:21 +00:00
has_zero <- function(estimate, low, high){
return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2))
}
test_glmer_ranef_D <- test_glmer_ranef_D |>
mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |>
mutate(rank = rank(estimate))
2024-05-09 23:40:33 +00:00
g <- test_glmer_ranef_D |>
2024-05-09 22:05:21 +00:00
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
theme_bw()
2024-05-10 00:48:20 +00:00
g
write.csv(test_glmer_ranef_D, "062424_readme_d_groupings.csv")
ggsave("0624d_wo_goups.png", g)
2024-06-24 23:48:20 +00:00
print("all pau")