2024-04-15 14:38:41 +00:00
|
|
|
# this is the file with the lmer multi-level rddAnalysis
|
2024-04-16 00:36:11 +00:00
|
|
|
library(tidyverse)
|
2024-04-19 19:30:41 +00:00
|
|
|
library(plyr)
|
2024-04-15 14:38:41 +00:00
|
|
|
# 0 loading the readme data in
|
|
|
|
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
|
|
|
|
readme_df <- read_csv("../final_data/deb_readme_did.csv")
|
|
|
|
# 1 preprocessing
|
2024-04-19 21:04:06 +00:00
|
|
|
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
|
2024-06-24 23:48:20 +00:00
|
|
|
col_order <- c("upstream_vcs_link", "age_in_days", "first_commit", "first_commit_dt", "event_gap", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
|
2024-04-15 14:38:41 +00:00
|
|
|
readme_df <- readme_df[,col_order]
|
|
|
|
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
|
|
|
|
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
|
|
|
|
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
|
|
|
|
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
|
|
|
|
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
|
|
|
|
readme_df = readme_df[,!(names(readme_df) %in% drop)]
|
|
|
|
# 2 some expansion needs to happens for each project
|
|
|
|
expand_timeseries <- function(project_row) {
|
|
|
|
longer <- project_row |>
|
|
|
|
pivot_longer(cols = starts_with("ct"),
|
|
|
|
names_to = "window",
|
|
|
|
values_to = "count") |>
|
|
|
|
unnest(count)
|
|
|
|
longer$observation_type <- gsub("^.*_", "", longer$window)
|
|
|
|
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
|
|
|
|
longer$count <- as.numeric(longer$count)
|
|
|
|
#longer <- longer[which(longer$observation_type == "all"),]
|
|
|
|
return(longer)
|
|
|
|
}
|
|
|
|
expanded_data <- expand_timeseries(readme_df[1,])
|
|
|
|
for (i in 2:nrow(readme_df)){
|
|
|
|
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
|
|
|
|
}
|
2024-04-16 16:43:32 +00:00
|
|
|
#filter out the windows of time that we're looking at
|
2024-04-15 14:38:41 +00:00
|
|
|
window_num <- 8
|
2024-04-21 03:13:13 +00:00
|
|
|
windowed_data <- expanded_data |>
|
2024-04-23 18:59:06 +00:00
|
|
|
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
|
|
|
mutate(D = ifelse(week > 27, 1, 0))
|
2024-04-20 16:09:35 +00:00
|
|
|
#scale the age numbers
|
2024-06-24 23:48:20 +00:00
|
|
|
windowed_data$scaled_project_age <- scale(windowed_data$age_in_days)
|
2024-06-25 15:36:29 +00:00
|
|
|
windowed_data$scaled_event_gap <- scale(windowed_data$event_gap)
|
2024-04-23 18:59:06 +00:00
|
|
|
windowed_data$week_offset <- windowed_data$week - 27
|
2024-05-13 04:22:14 +00:00
|
|
|
#break out the different types of commit actions that are studied
|
2024-04-21 03:13:13 +00:00
|
|
|
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
|
|
|
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
2024-05-13 04:22:14 +00:00
|
|
|
#log the dependent
|
2024-04-24 17:59:07 +00:00
|
|
|
all_actions_data$logged_count <- log(all_actions_data$count)
|
|
|
|
all_actions_data$log1p_count <- log1p(all_actions_data$count)
|
2024-06-13 18:40:27 +00:00
|
|
|
range(all_actions_data$log1p_count)
|
2024-08-24 22:04:46 +00:00
|
|
|
|
|
|
|
grouped_averages <- aggregate(all_actions_data$count, list(all_actions_data$upstream_vcs_link), mean)
|
|
|
|
quantile(grouped_averages$x)
|
|
|
|
|
2024-04-15 14:38:41 +00:00
|
|
|
# 3 rdd in lmer analysis
|
2024-04-16 16:43:32 +00:00
|
|
|
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
|
|
|
|
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
|
2024-04-22 15:41:14 +00:00
|
|
|
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
2024-05-13 04:22:14 +00:00
|
|
|
library(lme4)
|
2024-04-24 21:55:40 +00:00
|
|
|
library(optimx)
|
2024-05-07 23:40:38 +00:00
|
|
|
library(lattice)
|
2024-05-13 04:22:14 +00:00
|
|
|
#some more EDA to go between Poisson and neg binomial
|
2024-05-09 22:05:21 +00:00
|
|
|
var(all_actions_data$log1p_count) # 1.125429
|
|
|
|
mean (all_actions_data$log1p_count) # 0.6426873
|
2024-08-24 22:04:46 +00:00
|
|
|
sd(all_actions_data$log1p_count)
|
2024-06-13 18:40:27 +00:00
|
|
|
median(all_actions_data$log1p_count) #0
|
2024-05-10 19:11:24 +00:00
|
|
|
var(all_actions_data$count) # 268.4449
|
|
|
|
mean (all_actions_data$count) # 3.757298
|
2024-08-24 22:04:46 +00:00
|
|
|
sd (all_actions_data$count)
|
2024-06-13 18:40:27 +00:00
|
|
|
median(all_actions_data$count) # 0
|
2024-06-24 23:48:20 +00:00
|
|
|
print("fitting model")
|
2024-06-25 15:36:29 +00:00
|
|
|
#all_log1p_gmodel <- glmer.nb(log1p_count ~ D * week_offset+ scaled_project_age + scaled_event_gap + (D * week_offset | upstream_vcs_link), data=all_actions_data, nAGQ=1, control=glmerControl(optimizer="bobyqa",
|
2024-06-25 16:48:02 +00:00
|
|
|
# optCtrl=list(maxfun=1e5)))
|
2024-08-24 22:04:46 +00:00
|
|
|
#all_log1p_gmodel <- readRDS("final_models/0624_readme_all_rdd.rda")
|
2024-05-10 00:47:38 +00:00
|
|
|
summary(all_log1p_gmodel)
|
2024-06-24 23:48:20 +00:00
|
|
|
print("model fit")
|
|
|
|
#I grouped the ranef D effects on 0624
|
2024-05-10 19:11:24 +00:00
|
|
|
all_residuals <- residuals(all_log1p_gmodel)
|
|
|
|
qqnorm(all_residuals)
|
2024-05-09 23:40:33 +00:00
|
|
|
library(broom.mixed)
|
2024-05-10 19:11:24 +00:00
|
|
|
test_condvals <- broom.mixed::tidy(all_log1p_gmodel, effects = "ran_vals", conf.int = TRUE)
|
2024-06-25 19:53:41 +00:00
|
|
|
test_glmer_ranef_D <- test_condvals [which(test_condvals $term == "D"),]
|
2024-05-09 22:05:21 +00:00
|
|
|
has_zero <- function(estimate, low, high){
|
|
|
|
return(ifelse((low < 0),ifelse((high > 0), 1, 0), 2))
|
|
|
|
}
|
|
|
|
test_glmer_ranef_D <- test_glmer_ranef_D |>
|
|
|
|
mutate(ranef_grouping = has_zero(estimate, conf.low, conf.high)) |>
|
|
|
|
mutate(rank = rank(estimate))
|
2024-05-09 23:40:33 +00:00
|
|
|
g <- test_glmer_ranef_D |>
|
2024-05-09 22:05:21 +00:00
|
|
|
ggplot(aes(x=rank, y=estimate, col = as.factor(ranef_grouping))) +
|
|
|
|
geom_linerange(aes(ymin= conf.low, ymax= conf.high)) +
|
|
|
|
theme_bw()
|
2024-05-10 00:48:20 +00:00
|
|
|
g
|
2024-06-25 19:53:41 +00:00
|
|
|
write.csv(test_glmer_ranef_D, "062424_readme_d_groupings.csv")
|
2024-06-25 16:48:02 +00:00
|
|
|
ggsave("0624d_wo_goups.png", g)
|
2024-06-24 23:48:20 +00:00
|
|
|
print("all pau")
|