drafted power analysis
This commit is contained in:
parent
147bfb7bec
commit
0b1467c823
@ -60,8 +60,12 @@ g
|
|||||||
|
|
||||||
data2$yearsOld <- data2$age / 365
|
data2$yearsOld <- data2$age / 365
|
||||||
|
|
||||||
kmodel2 <- lm(up.fac.mean ~ mmt + milestones + yearsOld, data=data2)
|
kmodel2 <- lm(up.fac.mean ~ mmt + milestones + age, data=data1)
|
||||||
|
kmodel4 <- lm(up.fac.mean ~ mmt + age, data=data1)
|
||||||
|
kmodel3 <- lm(up.fac.mean ~ formal.score, data=data1)
|
||||||
summary(kmodel2)
|
summary(kmodel2)
|
||||||
|
summary(kmodel3)
|
||||||
|
summary(kmodel4)
|
||||||
|
|
||||||
#pilotM <- glm(up.fac.mean ~ ((mmt) / (milestones/age)), # give the anticipated regression a try
|
#pilotM <- glm(up.fac.mean ~ ((mmt) / (milestones/age)), # give the anticipated regression a try
|
||||||
# family=gaussian(link='identity'), data=data1)
|
# family=gaussian(link='identity'), data=data1)
|
||||||
@ -73,7 +77,13 @@ pilot.b2 <- coef(summary(kmodel2))[3,1]
|
|||||||
pilot.b3 <- coef(summary(kmodel2))[4,1]
|
pilot.b3 <- coef(summary(kmodel2))[4,1]
|
||||||
|
|
||||||
|
|
||||||
|
summary(pilot.b3)
|
||||||
|
|
||||||
|
qqline(data1$up.fac.mean)
|
||||||
|
|
||||||
|
sd(data1$up.fac.mean)
|
||||||
# (3) - Set up and run the simulation
|
# (3) - Set up and run the simulation
|
||||||
|
qqline(data1$mmt)
|
||||||
|
|
||||||
source('powerAnalysis.R') #my little "lib"
|
source('powerAnalysis.R') #my little "lib"
|
||||||
|
|
||||||
@ -86,8 +96,9 @@ n <- 100 #a guess for necessary sample size (per group)
|
|||||||
#print("Levels are:")
|
#print("Levels are:")
|
||||||
#print(levels(d$source))
|
#print(levels(d$source))
|
||||||
powerCheck(n, nSims)
|
powerCheck(n, nSims)
|
||||||
|
#powerCheck2(n, nSims) like doesn't really work
|
||||||
|
|
||||||
#Sample values
|
#Sample values
|
||||||
powerCheck(50, 100)
|
powerCheck(50, 1000)
|
||||||
powerCheck(80, 1000)
|
powerCheck(80, 1000)
|
||||||
powerCheck(200, 5000)
|
powerCheck(200, 5000)
|
||||||
|
@ -16,12 +16,29 @@ l2p <- function(b) {
|
|||||||
|
|
||||||
#Matt:
|
#Matt:
|
||||||
makeDataNew <- function(n) {
|
makeDataNew <- function(n) {
|
||||||
sDF <- data.frame(
|
tDF <- data.frame(
|
||||||
|
Group0=rnorm(n=n, mean=-0.1296376, sd=1.479847), # up.fac.mean
|
||||||
|
Group1=rlnorm(n=n, mean=1.685715, sd = 0.2532059), # mmt
|
||||||
|
Group2=rbinom(n=n, size=1, prob=c(0.247, 0.753)), #milestones
|
||||||
|
Group3=rnorm(n=n, mean=4351.578, sd=1408.811) # age
|
||||||
)
|
)
|
||||||
colnames(sDF) <- c('formality', 'age', 'contributors', 'collaborators', 'milestones', 'mmt', 'up.fac.mean')
|
#sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes
|
||||||
return(sDF)
|
colnames(tDF) <- c('up.fac.mean', 'mmt', 'milestones', 'age')
|
||||||
|
return(tDF)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
makeDataNew2 <- function(n) {
|
||||||
|
tDF <- data.frame(
|
||||||
|
Group0=rnorm(n=n, mean=-0.1296376, sd=1.479847), # up.fac.mean
|
||||||
|
Group1=rlnorm(n=n, mean=6.220282, sd = 2.544058) # formal.score
|
||||||
|
)
|
||||||
|
tDF[is.na(tDF) | tDF=="Inf"] = NA
|
||||||
|
#sDF <- melt(tDF, id.vars = 0) #AKA the index is the unique id, as far as that goes
|
||||||
|
colnames(tDF) <- c('up.fac.mean', 'formal.score')
|
||||||
|
return(tDF)
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
|
powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
|
||||||
#set up some empty arrays b/c R
|
#set up some empty arrays b/c R
|
||||||
signif0 <- rep(NA, nSims)
|
signif0 <- rep(NA, nSims)
|
||||||
@ -32,7 +49,8 @@ powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
|
|||||||
for (s in 1:nSims) { # repeatedly we will....
|
for (s in 1:nSims) { # repeatedly we will....
|
||||||
simData <- makeDataNew(n) # make some data
|
simData <- makeDataNew(n) # make some data
|
||||||
#have updated for kkex through here, now need to look at the underproduction work
|
#have updated for kkex through here, now need to look at the underproduction work
|
||||||
m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
|
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
|
||||||
|
m1.sim <- lm(up.fac.mean ~ mmt + milestones + age, data=simData)
|
||||||
p0 <- coef(summary(m1.sim))[1,4]
|
p0 <- coef(summary(m1.sim))[1,4]
|
||||||
p1 <- coef(summary(m1.sim))[1,4]
|
p1 <- coef(summary(m1.sim))[1,4]
|
||||||
p2 <- coef(summary(m1.sim))[1,4]
|
p2 <- coef(summary(m1.sim))[1,4]
|
||||||
@ -47,3 +65,25 @@ powerCheck <- function(n, nSims) { #run a power calculation on the dataset given
|
|||||||
return(power)
|
return(power)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
powerCheck2 <- function(n, nSims) { #run a power calculation on the dataset given
|
||||||
|
#set up some empty arrays b/c R
|
||||||
|
signif0 <- rep(NA, nSims)
|
||||||
|
signif1 <- rep(NA, nSims)
|
||||||
|
signif2 <- rep(NA, nSims)
|
||||||
|
signif3 <- rep(NA, nSims)
|
||||||
|
signifM <- rep(NA, nSims)
|
||||||
|
for (s in 1:nSims) { # repeatedly we will....
|
||||||
|
simData <- makeDataNew2(n) # make some data
|
||||||
|
#have updated for kkex through here, now need to look at the underproduction work
|
||||||
|
#m1.sim <- lm(up.fac.mean ~ ((mmt)/ (milestones/age)), data=simData)
|
||||||
|
m1.sim <- lm(up.fac.mean ~ formal.score, data=simData)
|
||||||
|
p0 <- coef(summary(m1.sim))[1,2]
|
||||||
|
p1 <- coef(summary(m1.sim))[1,2]
|
||||||
|
signif0[s] <- p0 <=.05
|
||||||
|
signif1[s] <- p1 <=.05
|
||||||
|
signifM[s] <- p0 <=.05 & p1 <=.05
|
||||||
|
}
|
||||||
|
power <- c(mean(signif0), mean(signif1), mean(signifM))
|
||||||
|
return(power)
|
||||||
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user