fixing contrib approach
This commit is contained in:
parent
a9770091ce
commit
55757a38c1
178
R/.Rhistory
178
R/.Rhistory
@ -1,92 +1,3 @@
|
|||||||
}
|
|
||||||
#filter out the windows of time that we're looking at
|
|
||||||
window_num <- 8
|
|
||||||
windowed_data <- expanded_data |>
|
|
||||||
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
|
||||||
mutate(D = ifelse(week > 27, 1, 0))
|
|
||||||
#scale the age numbers
|
|
||||||
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
|
|
||||||
windowed_data$week_offset <- windowed_data$week - 27
|
|
||||||
#separate out the cleaning d
|
|
||||||
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
|
||||||
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
|
||||||
# 3 rdd in lmer analysis
|
|
||||||
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
|
|
||||||
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
|
|
||||||
library(lme4)
|
|
||||||
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
|
||||||
#making some random data
|
|
||||||
sampled_data <- readme_df[sample(nrow(readme_df), 220), ]
|
|
||||||
expanded_sample_data <- expand_timeseries(sampled_data[1,])
|
|
||||||
for (i in 2:nrow(sampled_data)){
|
|
||||||
expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,]))
|
|
||||||
}
|
|
||||||
windowed_sample_data <- expanded_sample_data |>
|
|
||||||
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
|
||||||
mutate(D = ifelse(week > 27, 1, 0))
|
|
||||||
windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project)
|
|
||||||
windowed_sample_data$week_offset <- windowed_sample_data$week - 27
|
|
||||||
all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),]
|
|
||||||
#test model
|
|
||||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
|
||||||
summary(test_model)
|
|
||||||
#plot results
|
|
||||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
|
||||||
geom_point(size=3, show.legend = FALSE) +
|
|
||||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) +
|
|
||||||
theme_bw()
|
|
||||||
p
|
|
||||||
##
|
|
||||||
all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
|
||||||
summary(all_model)
|
|
||||||
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
|
||||||
#making some random data
|
|
||||||
sampled_data <- readme_df[sample(nrow(readme_df), 220), ]
|
|
||||||
expanded_sample_data <- expand_timeseries(sampled_data[1,])
|
|
||||||
for (i in 2:nrow(sampled_data)){
|
|
||||||
expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,]))
|
|
||||||
}
|
|
||||||
windowed_sample_data <- expanded_sample_data |>
|
|
||||||
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
|
||||||
mutate(D = ifelse(week > 27, 1, 0))
|
|
||||||
windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project)
|
|
||||||
windowed_sample_data$week_offset <- windowed_sample_data$week - 27
|
|
||||||
all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),]
|
|
||||||
#test model
|
|
||||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
|
||||||
summary(test_model)
|
|
||||||
#plot results
|
|
||||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
|
||||||
geom_point(size=3, show.legend = FALSE) +
|
|
||||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) +
|
|
||||||
theme_bw()
|
|
||||||
p
|
|
||||||
#test model
|
|
||||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (week_offset|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
|
||||||
summary(test_model)
|
|
||||||
#plot results
|
|
||||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
|
||||||
geom_point(size=3, show.legend = FALSE) +
|
|
||||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) +
|
|
||||||
theme_bw()
|
|
||||||
p
|
|
||||||
#test model
|
|
||||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
|
||||||
summary(test_model)
|
|
||||||
#plot results
|
|
||||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
|
||||||
geom_point(size=3, show.legend = FALSE) +
|
|
||||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) +
|
|
||||||
theme_bw()
|
|
||||||
p
|
|
||||||
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
|
||||||
#making some random data
|
|
||||||
sampled_data <- readme_df[sample(nrow(readme_df), 220), ]
|
|
||||||
expanded_sample_data <- expand_timeseries(sampled_data[1,])
|
|
||||||
for (i in 2:nrow(sampled_data)){
|
|
||||||
expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,]))
|
|
||||||
}
|
|
||||||
windowed_sample_data <- expanded_sample_data |>
|
|
||||||
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
||||||
mutate(D = ifelse(week > 27, 1, 0))
|
mutate(D = ifelse(week > 27, 1, 0))
|
||||||
windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project)
|
windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project)
|
||||||
@ -510,3 +421,92 @@ View(d_effect_ranef_all)
|
|||||||
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
summary(mrg_model)
|
summary(mrg_model)
|
||||||
|
library(tidyverse)
|
||||||
|
library(plyr)
|
||||||
|
#get the contrib data instead
|
||||||
|
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
|
||||||
|
contrib_df <- read_csv("../final_data/deb_contrib_did.csv")
|
||||||
|
#some preprocessing and expansion
|
||||||
|
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
|
||||||
|
contrib_df <- contrib_df[,col_order]
|
||||||
|
contrib_df$ct_before_all <- str_split(gsub("[][]","", contrib_df$before_all_ct), ", ")
|
||||||
|
contrib_df$ct_after_all <- str_split(gsub("[][]","", contrib_df$after_all_ct), ", ")
|
||||||
|
contrib_df$ct_before_mrg <- str_split(gsub("[][]","", contrib_df$before_mrg_ct), ", ")
|
||||||
|
contrib_df$ct_after_mrg <- str_split(gsub("[][]","", contrib_df$after_mrg_ct), ", ")
|
||||||
|
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
|
||||||
|
contrib_df = contrib_df[,!(names(contrib_df) %in% drop)]
|
||||||
|
# 2 some expansion needs to happens for each project
|
||||||
|
expand_timeseries <- function(project_row) {
|
||||||
|
longer <- project_row |>
|
||||||
|
pivot_longer(cols = starts_with("ct"),
|
||||||
|
names_to = "window",
|
||||||
|
values_to = "count") |>
|
||||||
|
unnest(count)
|
||||||
|
longer$observation_type <- gsub("^.*_", "", longer$window)
|
||||||
|
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
|
||||||
|
longer$count <- as.numeric(longer$count)
|
||||||
|
#longer <- longer[which(longer$observation_type == "all"),]
|
||||||
|
return(longer)
|
||||||
|
}
|
||||||
|
expanded_data <- expand_timeseries(contrib_df[1,])
|
||||||
|
for (i in 2:nrow(contrib_df)){
|
||||||
|
expanded_data <- rbind(expanded_data, expand_timeseries(contrib_df[i,]))
|
||||||
|
}
|
||||||
|
#filter out the windows of time that we're looking at
|
||||||
|
window_num <- 8
|
||||||
|
windowed_data <- expanded_data |>
|
||||||
|
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
||||||
|
mutate(D = ifelse(week > 27, 1, 0))
|
||||||
|
#scale the age numbers
|
||||||
|
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
|
||||||
|
windowed_data$week_offset <- windowed_data$week - 27
|
||||||
|
#separate out the cleaning d
|
||||||
|
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
||||||
|
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
||||||
|
#EDA?
|
||||||
|
#TKTK ---------------------
|
||||||
|
#imports for models
|
||||||
|
library(lme4)
|
||||||
|
library(optimx)
|
||||||
|
#models -- TKTK need to be fixed
|
||||||
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
#EDA?
|
||||||
|
hist(log(all_actions_data$count))
|
||||||
|
all_actions_data$logged_count <- log(all_actions_data$count)
|
||||||
|
all_actions_data$log1p_count <- log1p(all_actions_data$count)
|
||||||
|
#models -- TKTK need to be fixed
|
||||||
|
all_model <- lmer(logged_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
#models -- TKTK need to be fixed
|
||||||
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
summary(all_model)
|
||||||
|
#models -- TKTK need to be fixed
|
||||||
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
summary(all_model)
|
||||||
|
#models -- TKTK need to be fixed
|
||||||
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||||
|
week_offset
|
||||||
|
#models -- TKTK need to be fixed
|
||||||
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
summary(all_model)
|
||||||
|
# mrg behavior for this
|
||||||
|
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
# mrg behavior for this
|
||||||
|
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
summary(mrg_model)
|
||||||
|
# mrg behavior for this
|
||||||
|
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=mrg_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
# now for merge
|
||||||
|
mrg_actions_data$logged_count <- log(mrg_actions_data$count)
|
||||||
|
mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count)
|
||||||
|
# mrg behavior for this
|
||||||
|
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=mrg_actions_data, REML=FALSE, control = lmerControl(
|
||||||
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
|
summary(mrg_model)
|
||||||
|
@ -41,12 +41,18 @@ windowed_data$week_offset <- windowed_data$week - 27
|
|||||||
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
||||||
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
||||||
#EDA?
|
#EDA?
|
||||||
|
hist(log(all_actions_data$count))
|
||||||
|
all_actions_data$logged_count <- log(all_actions_data$count)
|
||||||
|
all_actions_data$log1p_count <- log1p(all_actions_data$count)
|
||||||
|
# now for merge
|
||||||
|
mrg_actions_data$logged_count <- log(mrg_actions_data$count)
|
||||||
|
mrg_actions_data$log1p_count <- log1p(mrg_actions_data$count)
|
||||||
#TKTK ---------------------
|
#TKTK ---------------------
|
||||||
#imports for models
|
#imports for models
|
||||||
library(lme4)
|
library(lme4)
|
||||||
library(optimx)
|
library(optimx)
|
||||||
#models -- TKTK need to be fixed
|
#models -- TKTK need to be fixed
|
||||||
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||||
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
summary(all_model)
|
summary(all_model)
|
||||||
#identifying the quartiles of effect for D
|
#identifying the quartiles of effect for D
|
||||||
@ -57,7 +63,7 @@ d_effect_ranef_all$quartile <- ntile(d_effect_ranef_all$condval, 4)
|
|||||||
all_residuals <- residuals(all_model)
|
all_residuals <- residuals(all_model)
|
||||||
qqnorm(all_residuals)
|
qqnorm(all_residuals)
|
||||||
# mrg behavior for this
|
# mrg behavior for this
|
||||||
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
mrg_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset | upstream_vcs_link), data=mrg_actions_data, REML=FALSE, control = lmerControl(
|
||||||
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||||
summary(mrg_model)
|
summary(mrg_model)
|
||||||
#identifying the quartiles of effect for D
|
#identifying the quartiles of effect for D
|
||||||
|
Loading…
Reference in New Issue
Block a user