fixing optimizer for model convergance
This commit is contained in:
parent
c97c24dd13
commit
73d5c5b979
212
R/.Rhistory
212
R/.Rhistory
@ -1,109 +1,3 @@
|
||||
p
|
||||
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
||||
# (D |upstream_vcs_link) or (week | upstream_vcs_link)
|
||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset) |upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme_bw()
|
||||
p
|
||||
#test model
|
||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D |upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
||||
summary(test_model)
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme_bw()
|
||||
p
|
||||
#test model
|
||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
||||
summary(test_model)
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme_bw()
|
||||
p
|
||||
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
||||
#making some random data
|
||||
sampled_data <- readme_df[sample(nrow(readme_df), 8), ]
|
||||
expanded_sample_data <- expand_timeseries(sampled_data[1,])
|
||||
for (i in 2:nrow(sampled_data)){
|
||||
expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,]))
|
||||
}
|
||||
windowed_sample_data <- expanded_sample_data |>
|
||||
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
|
||||
mutate(D = ifelse(week > 26, 1, 0))
|
||||
windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project)
|
||||
windowed_sample_data$week_offset <- windowed_sample_data$week - 26
|
||||
all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),]
|
||||
#test model
|
||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
||||
summary(test_model)
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme_bw()
|
||||
p
|
||||
#test model
|
||||
test_model <- lmer(count ~ D * I(week_offset) + scaled_project_age + (week_offset|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
||||
summary(test_model)
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme_bw()
|
||||
p
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
guides(fill="none") +
|
||||
theme_bw()
|
||||
p
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme(legend.position="none") +
|
||||
theme_bw()
|
||||
p
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link)) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme_bw(legend.position="none")
|
||||
p
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme_bw(legend.position="none")
|
||||
p
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link)) +
|
||||
theme_bw()
|
||||
p
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
||||
geom_point(size=3) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) +
|
||||
theme_bw()
|
||||
p
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
||||
geom_point(size=3, show.legend = FALSE) +
|
||||
geom_line(aes(y=predict(test_model), group=upstream_vcs_link), show.legend = FALSE) +
|
||||
theme_bw()
|
||||
p
|
||||
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
||||
#making some random data
|
||||
sampled_data <- readme_df[sample(nrow(readme_df), 220), ]
|
||||
expanded_sample_data <- expand_timeseries(sampled_data[1,])
|
||||
for (i in 2:nrow(sampled_data)){
|
||||
expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,]))
|
||||
@ -510,3 +404,109 @@ summary(all_model)
|
||||
##end of the model testing and plotting section
|
||||
all_model <- lmer(count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||
summary(all_model)
|
||||
# this is the file with the lmer multi-level rddAnalysis
|
||||
library(tidyverse)
|
||||
library(plyr)
|
||||
# 0 loading the readme data in
|
||||
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
|
||||
readme_df <- read_csv("../final_data/deb_readme_did.csv")
|
||||
# 1 preprocessing
|
||||
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
|
||||
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
|
||||
readme_df <- readme_df[,col_order]
|
||||
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
|
||||
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
|
||||
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
|
||||
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
|
||||
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
|
||||
readme_df = readme_df[,!(names(readme_df) %in% drop)]
|
||||
# 2 some expansion needs to happens for each project
|
||||
expand_timeseries <- function(project_row) {
|
||||
longer <- project_row |>
|
||||
pivot_longer(cols = starts_with("ct"),
|
||||
names_to = "window",
|
||||
values_to = "count") |>
|
||||
unnest(count)
|
||||
longer$observation_type <- gsub("^.*_", "", longer$window)
|
||||
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
|
||||
longer$count <- as.numeric(longer$count)
|
||||
#longer <- longer[which(longer$observation_type == "all"),]
|
||||
return(longer)
|
||||
}
|
||||
expanded_data <- expand_timeseries(readme_df[1,])
|
||||
for (i in 2:nrow(readme_df)){
|
||||
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
|
||||
}
|
||||
#filter out the windows of time that we're looking at
|
||||
window_num <- 8
|
||||
windowed_data <- expanded_data |>
|
||||
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
||||
mutate(D = ifelse(week > 27, 1, 0))
|
||||
#scale the age numbers
|
||||
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
|
||||
windowed_data$week_offset <- windowed_data$week - 27
|
||||
#separate out the cleaning d
|
||||
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
|
||||
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
|
||||
#find some EDA to identify which types of models might be the best for this
|
||||
hist(all_actions_data$count)
|
||||
#find some EDA to identify which types of models might be the best for this
|
||||
hist(log1p(all_actions_data$count))
|
||||
#find some EDA to identify which types of models might be the best for this
|
||||
hist(log(all_actions_data$count))
|
||||
# 3 rdd in lmer analysis
|
||||
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
|
||||
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
|
||||
library(lme4)
|
||||
##end of the model testing and plotting section
|
||||
all_model <- lmer(log(count) ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||
all_actions_data$logged_count <- log(all_actions_data$count)
|
||||
all_actions_data$log1p_count <- log1p(all_actions_data$count)
|
||||
##end of the model testing and plotting section
|
||||
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||
summary(all_model)
|
||||
all_residuals <- residuals(all_model)
|
||||
qqnorm(all_residuals)
|
||||
##end of the model testing and plotting section
|
||||
all_model <- lmer(logged_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||
##end of the model testing and plotting section
|
||||
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||
##end of the model testing and plotting section
|
||||
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (week_offset| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||
##end of the model testing and plotting section
|
||||
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
|
||||
#making some random data
|
||||
sampled_data <- readme_df[sample(nrow(readme_df), 220), ]
|
||||
expanded_sample_data <- expand_timeseries(sampled_data[1,])
|
||||
for (i in 2:nrow(sampled_data)){
|
||||
expanded_sample_data <- rbind(expanded_sample_data, expand_timeseries(sampled_data[i,]))
|
||||
}
|
||||
windowed_sample_data <- expanded_sample_data |>
|
||||
filter(week >= (27 - window_num) & week <= (27 + window_num)) |>
|
||||
mutate(D = ifelse(week > 27, 1, 0))
|
||||
windowed_sample_data$scaled_project_age <- scale(windowed_sample_data$age_of_project)
|
||||
windowed_sample_data$week_offset <- windowed_sample_data$week - 27
|
||||
all_actions_sample_data <- windowed_sample_data[which(windowed_sample_data$observation_type == "all"),]
|
||||
#test model
|
||||
test_model <- lmer(log1p_count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
||||
all_actions_sample_data$log1p_count <- log1p(all_actions_sample_data$count)
|
||||
#test model
|
||||
test_model <- lmer(log1p_count ~ D * I(week_offset) + scaled_project_age + (D * I(week_offset)|upstream_vcs_link), data=all_actions_sample_data, REML=FALSE)
|
||||
summary(test_model)
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
||||
geom_point(size=3, show.legend = FALSE) +
|
||||
geom_line(aes(y=predict(test_model)), show.legend = FALSE) +
|
||||
theme_bw()
|
||||
p
|
||||
#plot results
|
||||
p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_vcs_link), show.legend = FALSE) +
|
||||
geom_point(size=3, show.legend = FALSE) +
|
||||
geom_line(aes(y=predict(test_model)), show.legend = FALSE) +
|
||||
theme_bw()
|
||||
p
|
||||
library(merTools)
|
||||
ICC(outcome="count", group="week", data=all_actions_data)
|
||||
ICC(outcome="count", group="upstream_vcs_link", data=all_actions_data)
|
||||
ICC(outcome="count", group="week", data=all_actions_data)
|
||||
|
@ -80,8 +80,11 @@ p <- ggplot(all_actions_sample_data, aes(x=week_offset, y=count, color=upstream_
|
||||
theme_bw()
|
||||
p
|
||||
##end of the model testing and plotting section
|
||||
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE)
|
||||
library(optimx)
|
||||
all_model <- lmer(log1p_count ~ D * I(week_offset)+ scaled_project_age + (D * I(week_offset)| upstream_vcs_link), data=all_actions_data, REML=FALSE, control = lmerControl(
|
||||
optimizer ='optimx', optCtrl=list(method='L-BFGS-B')))
|
||||
summary(all_model)
|
||||
random_effects <- ranef(all_model)
|
||||
all_residuals <- residuals(all_model)
|
||||
qqnorm(all_residuals)
|
||||
# for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs
|
||||
|
Loading…
Reference in New Issue
Block a user