filename cleaning

This commit is contained in:
mjgaughan 2024-04-22 12:54:47 -05:00
parent 9e22d4adfe
commit a0ab5720fa
2 changed files with 290 additions and 290 deletions

View File

@ -1,286 +1,3 @@
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
length(ages)
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(readme_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
length(ages)
readme_df$age_of_project = full_df$age_of_project[full_df$upstream_vcs_link == readme_df$upstream_vcs_link]
View(readme_df)
readme_df$age_of_project = ages
View(readme_df)
write.csv(readme_df, "deb_readme_data_4_19.csv", row.names=FALSE)
#preprocessing for readme_df
colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(contributing_df)){
link <- readme_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
contributing_df$age_of_project = ages
write.csv(contributing_df, "deb_contributing_data_4_19.csv", row.names=FALSE)
View(contributing_df)
View(contributing_df)
View(readme_df)
View(contributing_df)
View(contributing_df)
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
View(contributing_df)
#preprocessing for readme_df
colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(contributing_df)){
link <- contributing_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(contributing_df)){
link <- contributing_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
#set wd, read in data
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
contributing_df <- read_csv("../final_data/deb_contrib_did.csv")
full_df <- read_csv("../final_data/deb_full_data.csv")
#preprocessing for readme_df
colnames(contributing_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
ages <- c()
projects <- c()
for (i in 1:nrow(contributing_df)){
link <- contributing_df[i,]$upstream_vcs_link
age <- full_df$age_of_project[full_df$upstream_vcs_link == link]
project <- full_df$project_name[full_df$upstream_vcs_link == link]
ages <- c(ages, age)
if (length(project) != 1){
project
break
} else {
projects <- c(projects, project)
}
}
contributing_df$age_of_project = ages
write.csv(contributing_df, "deb_contributing_data_4_19.csv", row.names=FALSE)
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
View(readme_df)
# 1 preprocessing
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
View(readme_df)
View(readme_df)
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
View(readme_df)
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window", names_to = "window",
values_to = "count") |> values_to = "count") |>
unnest(count) unnest(count)
@ -510,3 +227,286 @@ poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_pr
summary(poisson_all_model) summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model) poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals) qqnorm(poisson_residuals)
# this is the file with the lmer multi-level rddAnalysis
library(tidyverse)
library(plyr)
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
# 1 preprocessing
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
expanded_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week > 26, 1, 0))
# this is the file with the lmer multi-level rddAnalysis
library(tidyverse)
library(plyr)
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
# 1 preprocessing
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
windowed_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week > 26, 1, 0))
#scale the age numbers
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
#separate out the cleaning d
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
# 3 rdd in lmer analysis
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
library(lme4)
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
#logistic regression mixed effects
log_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link),data=all_actions_data, family = binomial)
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(scale(count) ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"), control=glmerControl(optimizer="bobyqa"))
#logistic regression mixed effects
log_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link),data=all_actions_data, family = binomial)
qqnorm(poisson_residuals)
summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals)
#logistic regression mixed effects (doesn't work)
log_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + upstream_vcs_link |upstream_vcs_link),data=all_actions_data, family = binomial)
#logistic regression mixed effects (doesn't work)
log_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link),data=all_actions_data, family = binomial)
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + upstream_vcs_link |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals)
lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(lmer_all_model)
lmer_residuals <- residuals(lmer_all_model)
qqnorm(lmer_residuals)
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals)
#if I'm reading the residuals right, the poisson is better?
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
# this is the file with the lmer multi-level rddAnalysis
library(tidyverse)
library(plyr)
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
# 1 preprocessing
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
windowed_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week > 26, 1, 0))
#scale the age numbers
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
#separate out the cleaning d
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
#if I'm reading the residuals right, the poisson is better?
# there's a conversation to be had between whether (D |upstream_vcs_link) or (D || upstream_vcs_link)
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
poisson_test_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_test_model)
summary(poisson_all_model)
summary(poisson_test_model)
poisson_test_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_test_model)
summary(poisson_all_model)
summary(poisson_test_model)
summary(poisson_all_model)
summary(poisson_test_model)
poisson_testing_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 | upstream_vcs_link) + (0 + D |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_testing_model)
#| label: packages
#| echo: true
library(tidyverse)
library(tidytext)
library(textdata)
library(textstem)
library(tidymodels)
#| label: packages
#| echo: true
library(tidyverse)
library(tidytext)
library(textdata)
library(textstem)
library(tidymodels)
#| label: data 1
#| echo: true
#|
reviews_df <- read_csv("data/rotten_tomatoes_critic_reviews.csv")
reviews_df |> head(2) |> kableExtra::kable()
summary(poisson_test_model)
summary(poisson_all_model)
summary(poisson_all_model)
summary(poisson_test_model)
#if I'm reading the residuals right, the poisson is better?
# there's a conversation to be had between whether (D |upstream_vcs_link) or (D || upstream_vcs_link)
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals)
poisson_test_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week ||upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_test_model)
summary(poisson_all_model)
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (1 + week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals)
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model)
ICC(outcome="count", group="week", data=all_actions_data)
library(merTools)
ICC(outcome="count", group="week", data=all_actions_data)
# this is the file with the lmer multi-level rddAnalysis
library(tidyverse)
library(plyr)
# 0 loading the readme data in
try(setwd(dirname(rstudioapi::getActiveDocumentContext()$path)))
readme_df <- read_csv("../final_data/deb_readme_did.csv")
# 1 preprocessing
#colnames(readme_df) <- c("upstream_vcs_link", "event_date", "event_hash", "before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct", "before_auth_new", "after_commit_new", "after_auth_new", "before_commit_new")
col_order <- c("upstream_vcs_link", "age_of_project", "event_date", "event_hash", "before_all_ct", "after_all_ct", "before_mrg_ct", "after_mrg_ct", "before_auth_new", "after_auth_new", "before_commit_new", "after_commit_new")
readme_df <- readme_df[,col_order]
readme_df$ct_before_all <- str_split(gsub("[][]","", readme_df$before_all_ct), ", ")
readme_df$ct_after_all <- str_split(gsub("[][]","", readme_df$after_all_ct), ", ")
readme_df$ct_before_mrg <- str_split(gsub("[][]","", readme_df$before_mrg_ct), ", ")
readme_df$ct_after_mrg <- str_split(gsub("[][]","", readme_df$after_mrg_ct), ", ")
drop <- c("before_all_ct", "before_mrg_ct", "after_all_ct", "after_mrg_ct")
readme_df = readme_df[,!(names(readme_df) %in% drop)]
# 2 some expansion needs to happens for each project
expand_timeseries <- function(project_row) {
longer <- project_row |>
pivot_longer(cols = starts_with("ct"),
names_to = "window",
values_to = "count") |>
unnest(count)
longer$observation_type <- gsub("^.*_", "", longer$window)
longer <- ddply(longer, "observation_type", transform, week=seq(from=0, by=1, length.out=length(observation_type)))
longer$count <- as.numeric(longer$count)
#longer <- longer[which(longer$observation_type == "all"),]
return(longer)
}
expanded_data <- expand_timeseries(readme_df[1,])
for (i in 2:nrow(readme_df)){
expanded_data <- rbind(expanded_data, expand_timeseries(readme_df[i,]))
}
#filter out the windows of time that we're looking at
window_num <- 8
windowed_data <- expanded_data |>
filter(week >= (26 - window_num) & week <= (26 + window_num)) |>
mutate(D = ifelse(week > 26, 1, 0))
#scale the age numbers
windowed_data$scaled_project_age <- scale(windowed_data$age_of_project)
#separate out the cleaning d
all_actions_data <- windowed_data[which(windowed_data$observation_type == "all"),]
mrg_actions_data <- windowed_data[which(windowed_data$observation_type == "mrg"),]
# for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs
#
#
poisson_mrg_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=mrg_actions_data, family = poisson(link = "log"))
summary(poisson_mrg_model)
poisson_mrg_residuals <- residuals(poisson_mrg_model)
qqnorm(poisson_mrg_residuals)

View File

@ -53,18 +53,18 @@ qqplot(all_actions_data$count, y)
# rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design # rdd: https://rpubs.com/phle/r_tutorial_regression_discontinuity_design
# lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc # lmer: https://www.youtube.com/watch?v=LzAwEKrn2Mc
library(lme4) library(lme4)
lmer_all_model <- lmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (D ||upstream_vcs_link), REML=FALSE, data=all_actions_data)
summary(lmer_all_model)
lmer_residuals <- residuals(lmer_all_model)
qqnorm(lmer_residuals)
# https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar # https://www.bristol.ac.uk/cmm/learning/videos/random-intercepts.html#exvar
poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log")) poisson_all_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=all_actions_data, family = poisson(link = "log"))
summary(poisson_all_model) summary(poisson_all_model)
poisson_residuals <- residuals(poisson_all_model) poisson_residuals <- residuals(poisson_all_model)
qqnorm(poisson_residuals) qqnorm(poisson_residuals)
# Performance: # for visualization, may have to run model for each project and then identify top 5 projects for RDD graphs
draft_mrg_model <- lmer(count ~ D * I(week - 26) + scaled_project_age + (1 + D |upstream_vcs_link), REML=FALSE, data=mrg_actions_data) #
summary(draft_mrg_model) #
poisson_mrg_model <- glmer(count ~ D + I(week - 26) + D:I(week - 26) + scaled_project_age + (week |upstream_vcs_link), data=mrg_actions_data, family = poisson(link = "log"))
summary(poisson_mrg_model)
poisson_mrg_residuals <- residuals(poisson_mrg_model)
qqnorm(poisson_mrg_residuals)
# Performance: # Performance:
library(merTools) library(merTools)