1
0

updated PCA analysis

This commit is contained in:
Matthew Gaughan 2025-10-15 10:45:29 -07:00
parent 0843685707
commit d86233abca
2 changed files with 78 additions and 18 deletions

View File

@ -0,0 +1,17 @@
1. SSH tunnel from your workstation using the following command:
ssh -N -L 8787:n3439:51247 mjilg@klone.hyak.uw.edu
and point your web browser to http://localhost:8787
2. log in to RStudio Server using the following credentials:
user: mjilg
password: z93icQDhumWD6WUbUC34
When done using RStudio Server, terminate the job by:
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
2. Issue the following command on the login node:
scancel -f 30110461

View File

@ -1,17 +1,16 @@
library(tidyverse)
neurobiber_description_pca_csv <-"~/p2/quest/100125_description_PCA_df.csv"
library(dplyr)
neurobiber_description_pca_csv <-"~/p2/quest/101325_description_PCA_df.csv"
neurobiber_description_pca_df <- read.csv(neurobiber_description_pca_csv , header = TRUE) |> mutate(comment_text = text)
neurobiber_subcomment_pca_csv <-"~/p2/quest/100125_subcomment_PCA_df.csv"
neurobiber_subcomment_pca_csv <-"~/p2/quest/101325_subcomment_PCA_df.csv"
neurobiber_subcomment_pca_df <- read.csv(neurobiber_subcomment_pca_csv , header = TRUE) |> mutate(comment_text = text)
main_csv <- "~/analysis_data/100625_unified_w_affil.csv"
main_df <- read.csv(main_csv , header = TRUE)
main_df <- main_df |>
select(TaskPHID, AuthorPHID, date_created, comment_text, isAuthorWMF, isGerritBot, resolution_outcome, task_title)
select(TaskPHID, AuthorPHID, date_created, comment_text, isAuthorWMF, isGerritBot, resolution_outcome, task_title, priority)
# Join main_df to neurobiber_description_pca_df
description_joined <- main_df |>
right_join(neurobiber_description_pca_df, by = c("TaskPHID", "AuthorPHID", "date_created", "comment_text")) |>
@ -59,7 +58,6 @@ subcomment_joined <- subcomment_joined %>%
neurobiber_description_pca_df$TaskPHID)))
# look at correlation between PC1, PC2, and different outcome variables
library(dplyr)
description_anova_results <- neurobiber_description_pca_df %>%
group_by(source) %>%
group_map(~ summary(aov(PC2 ~ phase, data = .x)), .keep = TRUE)
@ -71,20 +69,20 @@ discussion_anova_results <- neurobiber_subcomment_pca_df %>%
discussion_anova_results
# look at the representative comments for PC1 and PC2
top5 <- neurobiber_subcomment_pca_df %>%
arrange(desc(PC6)) %>%
top5 <- neurobiber_description_pca_df %>%
arrange(desc(PC2)) %>%
slice(300:310) %>%
pull(cleaned_comment)
bottom5 <- neurobiber_subcomment_pca_df %>%
arrange(PC6) %>%
bottom5 <- neurobiber_description_pca_df %>%
arrange(PC2) %>%
slice(300:310) %>%
pull(cleaned_comment)
cat("Top 300:310 comment_text by PC2 score:\n")
print(top5)
cat("\nBottom 300:310 comment_text by PC1 score:\n")
cat("\nBottom 300:310 comment_text by PC2 score:\n")
print(bottom5)
@ -97,23 +95,68 @@ affiliationColors <-
,c("False", "True"))
subcomment_joined_no_gerrit <- subcomment_joined |>
filter(isGerritBot != "TRUE")
filter(isGerritBot != "TRUE") |>
left_join(neurobiber_description_pca_df |> select(TaskPHID, priority), by = "TaskPHID")
#unified_df$AuthorWMFAffil <- factor(unified_df$AuthorWMFAffil, levels = c("False", "True"))
#unified_df <- unified_df[order(unified_df$AuthorWMFAffil), ]
# geom_point(shape = 21, alpha=0.4, size=2) +
# geom_bin_2d() +
ggplot(subcomment_joined_no_gerrit, aes(x = PC2, y = PC1, fill = isAuthorWMF)) +
facet_grid(source ~ pair_in_description, scales="fixed") +
sampled_authors <- subcomment_joined_no_gerrit %>%
distinct(AuthorPHID) %>%
sample_n(100) %>%
pull(AuthorPHID)
# 2. Filter original data to just those authors
sub_sample <- subcomment_joined_no_gerrit %>%
filter(AuthorPHID %in% sampled_authors)
description_sampled_authors <- description_joined %>%
distinct(AuthorPHID) %>%
sample_n(8) %>%
pull(AuthorPHID)
# 2. Filter original data to just those authors
description_sub_sample <- description_joined %>%
filter(AuthorPHID %in% description_sampled_authors)
ggplot(description_sub_sample, aes(x = PC2, y = PC1, fill = AuthorPHID)) +
facet_grid(source~phase, scales="fixed") +
geom_point(shape = 21, alpha=0.3, size=2) +
xlim(-15, 15) +
ylim(-15, 15) +
scale_fill_viridis_d() +
xlim(-30, 30) +
ylim(-30, 30) +
scale_fill_brewer(palette = "Set1") +
theme_minimal() +
guides(fill = "none") +
labs(
title = "PCs for Task Comments (Faceted by source and pair_in_description)",
title = "PCs for Task Comments (Faceted by source and phase)",
x = "PC2",
y = "PC1",
)
priority_order <- c("Unbreak Now!", "High", "Medium", "Low", "Lowest", "Needs Triage")
subcomment_joined_no_gerrit <- subcomment_joined_no_gerrit %>%
mutate(priority = factor(priority, levels = priority_order))
description_joined <- description_joined %>%
mutate(priority = factor(priority.y, levels = priority_order))
ggplot(description_joined, aes(
x = as.factor(priority), # x-axis grouping
y = PC2,
fill = AuthorPHID
)) +
ylim(-20, 20) +
geom_boxplot(alpha = 0.7, position = position_dodge(width = 0.9)) +
facet_grid(. ~ source, scales = "fixed") + # Facet by source; adjust as needed
scale_fill_viridis_d() +
theme_minimal() +
labs(
title = "Boxplot of PC2 for Task Descriptions",
x = "Task priority",
y = "PC2",
fill = "isAuthorWMF?"
)