1
0
mw-lifecycle-analysis/p2/quest/neurobiber_PCA_analysis.R
2025-10-15 10:45:29 -07:00

163 lines
5.8 KiB
R

library(tidyverse)
library(dplyr)
neurobiber_description_pca_csv <-"~/p2/quest/101325_description_PCA_df.csv"
neurobiber_description_pca_df <- read.csv(neurobiber_description_pca_csv , header = TRUE) |> mutate(comment_text = text)
neurobiber_subcomment_pca_csv <-"~/p2/quest/101325_subcomment_PCA_df.csv"
neurobiber_subcomment_pca_df <- read.csv(neurobiber_subcomment_pca_csv , header = TRUE) |> mutate(comment_text = text)
main_csv <- "~/analysis_data/100625_unified_w_affil.csv"
main_df <- read.csv(main_csv , header = TRUE)
main_df <- main_df |>
select(TaskPHID, AuthorPHID, date_created, comment_text, isAuthorWMF, isGerritBot, resolution_outcome, task_title, priority)
# Join main_df to neurobiber_description_pca_df
description_joined <- main_df |>
right_join(neurobiber_description_pca_df, by = c("TaskPHID", "AuthorPHID", "date_created", "comment_text")) |>
filter(comment_text != "nan") #TODO: look at this more in depth
# Join main_df to neurobiber_subcomment_pca_df
subcomment_joined <- main_df |>
right_join(neurobiber_subcomment_pca_df, by = c("TaskPHID", "AuthorPHID", "date_created", "comment_text")) |>
filter(comment_text != "nan") #TODO: look at this more in depth
preprocess_comment <- function(message) {
library(stringr)
comment_text <- message
# 1. replace code with CODE
# Inline code: `...`
comment_text <- str_replace_all(comment_text, "`[^`]+`", "CODE")
# Block code: ```...```
comment_text <- str_replace_all(comment_text, "```[\\s\\S]+?```", "CODE")
# 2. replace quotes with QUOTE
lines <- unlist(strsplit(comment_text, "\n"))
lines <- ifelse(str_detect(str_trim(lines), "^>"), "QUOTE", lines)
comment_text <- paste(lines, collapse = "\n")
# 3. replace Gerrit URLs with GERRIT_URL
gerrit_url_pattern <- "https://gerrit\\.wikimedia\\.org/r/\\d+"
comment_text <- str_replace_all(comment_text, gerrit_url_pattern, "GERRIT_URL")
# replace URL with URL
url_pattern <- "https?://[^\\s]+"
comment_text <- str_replace_all(comment_text, url_pattern, "URL")
# 4. replace @screenname with SCREEN_NAME
cleaned_message <- str_replace_all(comment_text, "(^|\\s)@\\w+", "SCREEN_NAME")
return(cleaned_message)
}
# Add comment_type column to each df
neurobiber_description_pca_df$comment_type <- "task_description"
neurobiber_subcomment_pca_df$comment_type <- "subcomment"
#clean the messages
neurobiber_description_pca_df$cleaned_comment <- sapply(neurobiber_description_pca_df$text, preprocess_comment)
neurobiber_subcomment_pca_df$cleaned_comment <- sapply(neurobiber_subcomment_pca_df$text, preprocess_comment)
subcomment_joined <- subcomment_joined %>%
mutate(pair_in_description = (paste(AuthorPHID, TaskPHID) %in%
paste(neurobiber_description_pca_df$AuthorPHID,
neurobiber_description_pca_df$TaskPHID)))
# look at correlation between PC1, PC2, and different outcome variables
description_anova_results <- neurobiber_description_pca_df %>%
group_by(source) %>%
group_map(~ summary(aov(PC2 ~ phase, data = .x)), .keep = TRUE)
description_anova_results
discussion_anova_results <- neurobiber_subcomment_pca_df %>%
group_by(source) %>%
group_map(~ summary(aov(PC2 ~ phase, data = .x)), .keep = TRUE)
discussion_anova_results
# look at the representative comments for PC1 and PC2
top5 <- neurobiber_description_pca_df %>%
arrange(desc(PC2)) %>%
slice(300:310) %>%
pull(cleaned_comment)
bottom5 <- neurobiber_description_pca_df %>%
arrange(PC2) %>%
slice(300:310) %>%
pull(cleaned_comment)
cat("Top 300:310 comment_text by PC2 score:\n")
print(top5)
cat("\nBottom 300:310 comment_text by PC2 score:\n")
print(bottom5)
library(scales)
library(ggplot2)
affiliationColors <-
setNames( c('#5da2d8', '#c7756a')
,c("False", "True"))
subcomment_joined_no_gerrit <- subcomment_joined |>
filter(isGerritBot != "TRUE") |>
left_join(neurobiber_description_pca_df |> select(TaskPHID, priority), by = "TaskPHID")
#unified_df$AuthorWMFAffil <- factor(unified_df$AuthorWMFAffil, levels = c("False", "True"))
#unified_df <- unified_df[order(unified_df$AuthorWMFAffil), ]
# geom_point(shape = 21, alpha=0.4, size=2) +
# geom_bin_2d() +
sampled_authors <- subcomment_joined_no_gerrit %>%
distinct(AuthorPHID) %>%
sample_n(100) %>%
pull(AuthorPHID)
# 2. Filter original data to just those authors
sub_sample <- subcomment_joined_no_gerrit %>%
filter(AuthorPHID %in% sampled_authors)
description_sampled_authors <- description_joined %>%
distinct(AuthorPHID) %>%
sample_n(8) %>%
pull(AuthorPHID)
# 2. Filter original data to just those authors
description_sub_sample <- description_joined %>%
filter(AuthorPHID %in% description_sampled_authors)
ggplot(description_sub_sample, aes(x = PC2, y = PC1, fill = AuthorPHID)) +
facet_grid(source~phase, scales="fixed") +
geom_point(shape = 21, alpha=0.3, size=2) +
xlim(-30, 30) +
ylim(-30, 30) +
scale_fill_brewer(palette = "Set1") +
theme_minimal() +
guides(fill = "none") +
labs(
title = "PCs for Task Comments (Faceted by source and phase)",
x = "PC2",
y = "PC1",
)
priority_order <- c("Unbreak Now!", "High", "Medium", "Low", "Lowest", "Needs Triage")
subcomment_joined_no_gerrit <- subcomment_joined_no_gerrit %>%
mutate(priority = factor(priority, levels = priority_order))
description_joined <- description_joined %>%
mutate(priority = factor(priority.y, levels = priority_order))
ggplot(description_joined, aes(
x = as.factor(priority), # x-axis grouping
y = PC2,
fill = AuthorPHID
)) +
ylim(-20, 20) +
geom_boxplot(alpha = 0.7, position = position_dodge(width = 0.9)) +
facet_grid(. ~ source, scales = "fixed") + # Facet by source; adjust as needed
scale_fill_viridis_d() +
theme_minimal() +
labs(
title = "Boxplot of PC2 for Task Descriptions",
x = "Task priority",
y = "PC2",
fill = "isAuthorWMF?"
)