2021-05-10 20:46:49 +00:00
|
|
|
import fire
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from kmeans_clustering import kmeans_job, kmeans_clustering_result, kmeans_grid_sweep
|
|
|
|
from lsi_base import lsi_mixin, lsi_result_mixin, lsi_grid_sweep
|
|
|
|
from grid_sweep import grid_sweep
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class kmeans_clustering_result_lsi(kmeans_clustering_result, lsi_result_mixin):
|
|
|
|
pass
|
|
|
|
|
|
|
|
class kmeans_lsi_job(kmeans_job, lsi_mixin):
|
|
|
|
def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
|
|
|
|
super().__init__(infile,
|
|
|
|
outpath,
|
|
|
|
name,
|
|
|
|
*args,
|
|
|
|
**kwargs)
|
|
|
|
super().set_lsi_dims(lsi_dims)
|
|
|
|
|
|
|
|
def get_info(self):
|
|
|
|
result = super().get_info()
|
|
|
|
self.result = kmeans_clustering_result_lsi(**result.__dict__,
|
|
|
|
lsi_dimensions=self.lsi_dims)
|
|
|
|
return self.result
|
|
|
|
|
|
|
|
class _kmeans_lsi_grid_sweep(grid_sweep):
|
|
|
|
def __init__(self,
|
|
|
|
inpath,
|
|
|
|
outpath,
|
|
|
|
lsi_dim,
|
|
|
|
*args,
|
|
|
|
**kwargs):
|
|
|
|
print(args)
|
|
|
|
print(kwargs)
|
|
|
|
self.lsi_dim = lsi_dim
|
|
|
|
self.jobtype = kmeans_lsi_job
|
2021-08-03 21:55:02 +00:00
|
|
|
super().__init__(self.jobtype, inpath, outpath, self.namer, [self.lsi_dim], *args, **kwargs)
|
2021-05-10 20:46:49 +00:00
|
|
|
|
|
|
|
def namer(self, *args, **kwargs):
|
|
|
|
s = kmeans_grid_sweep.namer(self, *args[1:], **kwargs)
|
|
|
|
s += f"_lsi-{self.lsi_dim}"
|
|
|
|
return s
|
|
|
|
|
|
|
|
class kmeans_lsi_grid_sweep(lsi_grid_sweep):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
inpath,
|
|
|
|
lsi_dims,
|
|
|
|
outpath,
|
|
|
|
n_clusters,
|
|
|
|
n_inits,
|
|
|
|
max_iters
|
|
|
|
):
|
|
|
|
|
|
|
|
super().__init__(kmeans_lsi_job,
|
|
|
|
_kmeans_lsi_grid_sweep,
|
|
|
|
inpath,
|
|
|
|
lsi_dims,
|
|
|
|
outpath,
|
|
|
|
n_clusters,
|
|
|
|
n_inits,
|
|
|
|
max_iters)
|
|
|
|
|
|
|
|
def run_kmeans_lsi_grid_sweep(savefile, inpath, outpath, n_clusters=[500], n_inits=[1], max_iters=[3000], lsi_dimensions="all"):
|
|
|
|
"""Run kmeans clustering once or more with different parameters.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
kmeans_clustering_lsi.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH d--lsi_dimensions=<"all"|csv number of LSI dimensions to use> --n_clusters=<csv number of clusters> --n_inits=<csv> --max_iters=<csv>
|
|
|
|
|
|
|
|
Keword arguments:
|
|
|
|
savefile: path to save the metadata and diagnostics
|
|
|
|
inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
|
|
|
|
outpath: path to output fit kmeans clusterings.
|
|
|
|
lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
|
|
|
|
n_clusters: one or more numbers of kmeans clusters to select.
|
|
|
|
n_inits: one or more numbers of different initializations to use for each clustering.
|
|
|
|
max_iters: one or more numbers of different maximum interations.
|
|
|
|
"""
|
|
|
|
|
|
|
|
obj = kmeans_lsi_grid_sweep(inpath,
|
|
|
|
lsi_dimensions,
|
|
|
|
outpath,
|
|
|
|
list(map(int,n_clusters)),
|
|
|
|
list(map(int,n_inits)),
|
|
|
|
list(map(int,max_iters))
|
|
|
|
)
|
|
|
|
|
|
|
|
obj.run(1)
|
|
|
|
obj.save(savefile)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
fire.Fire(run_kmeans_lsi_grid_sweep)
|