13
0
cdsc_reddit/similarities/similarities_helper.py

394 lines
16 KiB
Python
Raw Normal View History

from pyspark.sql import SparkSession
from pyspark.sql import Window
from pyspark.sql import functions as f
from enum import Enum
from pyspark.mllib.linalg.distributed import CoordinateMatrix
from tempfile import TemporaryDirectory
import pyarrow
import pyarrow.dataset as ds
from scipy.sparse import csr_matrix, issparse
import pandas as pd
import numpy as np
2020-12-09 01:32:20 +00:00
import pathlib
from datetime import datetime
from pathlib import Path
class tf_weight(Enum):
MaxTF = 1
Norm05 = 2
infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet"
def reindex_tfidf_time_interval(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(exclude_phrases)
tfidf_weekly = spark.read.parquet(infile)
# create the time interval
if from_date is not None:
if type(from_date) is str:
from_date = datetime.fromisoformat(from_date)
tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week >= from_date)
if to_date is not None:
if type(to_date) is str:
to_date = datetime.fromisoformat(to_date)
tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week < to_date)
tfidf = tfidf_weekly.groupBy(["subreddit","week", term_id, term]).agg(f.sum("tf").alias("tf"))
tfidf = _calc_tfidf(tfidf, term_colname, tf_weight.Norm05)
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
tfidf = spark.read_parquet(tempdir.name)
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
return(tempdir, subreddit_names)
def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(exclude_phrases)
tfidf = spark.read.parquet(infile)
if included_subreddits is None:
included_subreddits = select_topN_subreddits(topN)
else:
included_subreddits = set(open(included_subreddits))
if exclude_phrases == True:
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
print("creating temporary parquet with matrix indicies")
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
tfidf = spark.read.parquet(tempdir.name)
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
return (tempdir, subreddit_names)
2021-02-23 00:03:48 +00:00
def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
'''
tfidf_colname: set to 'relative_tf' to use normalized term frequency instead of tf-idf, which can be useful for author-based similarities.
'''
if from_date is not None or to_date is not None:
2021-02-23 00:03:48 +00:00
tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date)
else:
2021-02-23 00:03:48 +00:00
tempdir, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False)
print("loading matrix")
# mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
2021-02-23 00:03:48 +00:00
mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname)
print('computing similarities')
sims = simfunc(mat)
del mat
if issparse(sims):
sims = sims.todense()
print(f"shape of sims:{sims.shape}")
print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}")
sims = pd.DataFrame(sims)
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
sims['subreddit'] = subreddit_names.subreddit.values
p = Path(outfile)
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
sims.to_feather(outfile)
tempdir.cleanup()
2021-02-23 00:03:48 +00:00
def read_tfidf_matrix_weekly(path, term_colname, week, tfidf_colname='tf_idf'):
2020-12-09 01:32:20 +00:00
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet')
2021-02-23 00:03:48 +00:00
entries = dataset.to_table(columns=[tfidf_colname,'subreddit_id_new', term_id_new],filter=ds.field('week')==week).to_pandas()
return(csr_matrix((entries[tfidf_colname], (entries[term_id_new]-1, entries.subreddit_id_new-1))))
def read_tfidf_matrix(path, term_colname, tfidf_colname='tf_idf'):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet')
print(f"tfidf_colname:{tfidf_colname}")
entries = dataset.to_table(columns=[tfidf_colname, 'subreddit_id_new',term_id_new]).to_pandas()
return(csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1))))
2020-12-09 01:32:20 +00:00
def write_weekly_similarities(path, sims, week, names):
sims['week'] = week
p = pathlib.Path(path)
if not p.is_dir():
p.mkdir()
# reformat as a pairwise list
sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values)
sims.to_parquet(p / week.isoformat())
def column_overlaps(mat):
non_zeros = (mat != 0).astype('double')
intersection = non_zeros.T @ non_zeros
card1 = non_zeros.sum(axis=0)
den = np.add.outer(card1,card1) - intersection
return intersection / den
def column_similarities(mat):
norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
mat = mat.multiply(1/norm)
sims = mat.T @ mat
return(sims)
def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df, included_subreddits):
2020-12-09 01:32:20 +00:00
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col('count') >= min_df)
if max_df is not None:
tfidf = tfidf.filter(f.col('count') <= max_df)
2020-12-09 01:32:20 +00:00
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
# we might not have the same terms or subreddits each week, so we need to make unique ids for each week.
sub_ids = tfidf.select(['subreddit_id','week']).distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.partitionBy('week').orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,['subreddit_id','week'])
# only use terms in at least min_df included subreddits in a given week
new_count = tfidf.groupBy([term_id,'week']).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,[term_id,'week'],how='inner')
# reset the term ids
term_ids = tfidf.select([term_id,'week']).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.partitionBy('week').orderBy(term_id)))
tfidf = tfidf.join(term_ids,[term_id,'week'])
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
tfidf = tfidf.repartition('week')
tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
return(tempdir)
def prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col('count') >= min_df)
if max_df is not None:
tfidf = tfidf.filter(f.col('count') <= max_df)
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
# reset the subreddit ids
sub_ids = tfidf.select('subreddit_id').distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new", f.row_number().over(Window.orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,'subreddit_id')
# only use terms in at least min_df included subreddits
new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,term_id,how='inner')
# reset the term ids
term_ids = tfidf.select([term_id]).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
tfidf = tfidf.join(term_ids,term_id)
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", (tfidf.relative_tf * tfidf.idf).cast('float'))
tempdir =TemporaryDirectory(suffix='.parquet',prefix='term_tfidf_entries',dir='.')
tfidf.write.parquet(tempdir.name,mode='overwrite',compression='snappy')
return tempdir
2020-12-09 01:32:20 +00:00
# try computing cosine similarities using spark
def spark_cosine_similarities(tfidf, term_colname, min_df, included_subreddits, similarity_threshold):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
tfidf = tfidf.cache()
# reset the subreddit ids
sub_ids = tfidf.select('subreddit_id').distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,'subreddit_id')
# only use terms in at least min_df included subreddits
new_count = tfidf.groupBy(term_id).agg(f.count(term_id).alias('new_count'))
tfidf = tfidf.join(new_count,term_id,how='inner')
# reset the term ids
term_ids = tfidf.select([term_id]).distinct()
term_ids = term_ids.withColumn(term_id_new,f.row_number().over(Window.orderBy(term_id)))
tfidf = tfidf.join(term_ids,term_id)
tfidf = tfidf.withColumnRenamed("tf_idf","tf_idf_old")
tfidf = tfidf.withColumn("tf_idf", tfidf.relative_tf * tfidf.idf)
# step 1 make an rdd of entires
# sorted by (dense) spark subreddit id
n_partitions = int(len(included_subreddits)*2 / 5)
entries = tfidf.select(f.col(term_id_new)-1,f.col("subreddit_id_new")-1,"tf_idf").rdd.repartition(n_partitions)
# put like 10 subredis in each partition
# step 2 make it into a distributed.RowMatrix
coordMat = CoordinateMatrix(entries)
coordMat = CoordinateMatrix(coordMat.entries.repartition(n_partitions))
# this needs to be an IndexedRowMatrix()
mat = coordMat.toRowMatrix()
#goal: build a matrix of subreddit columns and tf-idfs rows
sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
return (sim_dist, tfidf)
def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
term = term_colname
term_id = term + '_id'
# aggregate counts by week. now subreddit-term is distinct
df = df.filter(df.subreddit.isin(include_subs))
df = df.groupBy(['subreddit',term,'week']).agg(f.sum('tf').alias('tf'))
max_subreddit_terms = df.groupby(['subreddit','week']).max('tf') # subreddits are unique
max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
df = df.join(max_subreddit_terms, on=['subreddit','week'])
df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
# group by term. term is unique
idf = df.groupby([term,'week']).count()
N_docs = df.select(['subreddit','week']).distinct().groupby(['week']).agg(f.count("subreddit").alias("subreddits_in_week"))
idf = idf.join(N_docs, on=['week'])
# add a little smoothing to the idf
idf = idf.withColumn('idf',f.log(idf.subreddits_in_week) / (1+f.col('count'))+1)
# collect the dictionary to make a pydict of terms to indexes
terms = idf.select([term,'week']).distinct() # terms are distinct
terms = terms.withColumn(term_id,f.row_number().over(Window.partitionBy('week').orderBy(term))) # term ids are distinct
# make subreddit ids
subreddits = df.select(['subreddit','week']).distinct()
subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.partitionBy("week").orderBy("subreddit")))
df = df.join(subreddits,on=['subreddit','week'])
# map terms to indexes in the tfs and the idfs
df = df.join(terms,on=[term,'week']) # subreddit-term-id is unique
idf = idf.join(terms,on=[term,'week'])
# join on subreddit/term to create tf/dfs indexed by term
df = df.join(idf, on=[term_id, term,'week'])
# agg terms by subreddit to make sparse tf/df vectors
if tf_family == tf_weight.MaxTF:
df = df.withColumn("tf_idf", df.relative_tf * df.idf)
else: # tf_fam = tf_weight.Norm05
df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
return df
def _calc_tfidf(df, term_colname, tf_family):
term = term_colname
term_id = term + '_id'
max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
df = df.join(max_subreddit_terms, on='subreddit')
df = df.withColumn("relative_tf", df.tf / df.sr_max_tf)
# group by term. term is unique
idf = df.groupby([term]).count()
N_docs = df.select('subreddit').distinct().count()
# add a little smoothing to the idf
idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
# collect the dictionary to make a pydict of terms to indexes
terms = idf.select(term).distinct() # terms are distinct
terms = terms.withColumn(term_id,f.row_number().over(Window.orderBy(term))) # term ids are distinct
# make subreddit ids
subreddits = df.select(['subreddit']).distinct()
subreddits = subreddits.withColumn('subreddit_id',f.row_number().over(Window.orderBy("subreddit")))
df = df.join(subreddits,on='subreddit')
# map terms to indexes in the tfs and the idfs
df = df.join(terms,on=term) # subreddit-term-id is unique
idf = idf.join(terms,on=term)
# join on subreddit/term to create tf/dfs indexed by term
df = df.join(idf, on=[term_id, term])
# agg terms by subreddit to make sparse tf/df vectors
if tf_family == tf_weight.MaxTF:
df = df.withColumn("tf_idf", df.relative_tf * df.idf)
else: # tf_fam = tf_weight.Norm05
df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
return df
def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
term = term_colname
term_id = term + '_id'
# aggregate counts by week. now subreddit-term is distinct
df = df.filter(df.subreddit.isin(include_subs))
df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
df = _calc_tfidf(df, term_colname, tf_family)
return df
2021-02-23 00:03:48 +00:00
def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonswf.csv"):
2020-12-09 01:32:20 +00:00
rankdf = pd.read_csv(path)
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
return included_subreddits