13
0
cdsc_reddit/clustering/clustering.py

65 lines
2.6 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# TODO: replace prints with logging.
import sys
2020-11-17 23:59:20 +00:00
import pandas as pd
import numpy as np
from sklearn.cluster import AffinityPropagation
import fire
from pathlib import Path
def read_similarity_mat(similarities, use_threads=True):
df = pd.read_feather(similarities, use_threads=use_threads)
mat = np.array(df.drop('_subreddit',1))
n = mat.shape[0]
mat[range(n),range(n)] = 1
return (df._subreddit,mat)
def affinity_clustering(similarities, *args, **kwargs):
subreddits, mat = read_similarity_mat(similarities)
return _affinity_clustering(mat, subreddits, *args, **kwargs)
2020-11-17 23:59:20 +00:00
def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
2020-11-17 23:59:20 +00:00
'''
similarities: feather file with a dataframe of similarity scores
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.
2020-11-17 23:59:20 +00:00
'''
2021-04-21 23:56:25 +00:00
print(f"damping:{damping}; convergenceIter:{convergence_iter}; preferenceQuantile:{preference_quantile}")
2020-11-17 23:59:20 +00:00
preference = np.quantile(mat,preference_quantile)
print(f"preference is {preference}")
2020-12-09 01:32:20 +00:00
print("data loaded")
sys.stdout.flush()
2020-11-17 23:59:20 +00:00
clustering = AffinityPropagation(damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
copy=False,
preference=preference,
affinity='precomputed',
verbose=verbose,
2020-11-17 23:59:20 +00:00
random_state=random_state).fit(mat)
print(f"clustering took {clustering.n_iter_} iterations")
clusters = clustering.labels_
print(f"found {len(set(clusters))} clusters")
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
2020-11-17 23:59:20 +00:00
cluster_sizes = cluster_data.groupby("cluster").count()
print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
print(f"the median cluster has {cluster_sizes.subreddit.median()} members")
print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
sys.stdout.flush()
2020-11-17 23:59:20 +00:00
cluster_data.to_feather(output)
print(f"saved {output}")
return clustering
2020-11-17 23:59:20 +00:00
if __name__ == "__main__":
fire.Fire(affinity_clustering)