13
0
cdsc_reddit/similarities/weekly_cosine_similarities.py

82 lines
3.8 KiB
Python
Raw Normal View History

2020-12-09 01:32:20 +00:00
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
from pyspark.sql import Window
import numpy as np
import pyarrow
import pyarrow.dataset as ds
2020-12-09 01:32:20 +00:00
import pandas as pd
import fire
from itertools import islice, chain
2020-12-09 01:32:20 +00:00
from pathlib import Path
from similarities_helper import *
2021-04-22 17:37:04 +00:00
from multiprocessing import Pool, cpu_count
from functools import partial
2020-12-09 01:32:20 +00:00
def _week_similarities(week, simfunc, tfidf_path, term_colname, min_df, max_df, included_subreddits, topN, outdir:Path):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
print(f"loading matrix: {week}")
entries, subreddit_names = reindex_tfidf(infile = tfidf_path,
term_colname=term_colname,
min_df=min_df,
max_df=max_df,
included_subreddits=included_subreddits,
topN=topN,
week=week)
mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new], entries.subreddit_id_new)))
print('computing similarities')
sims = column_similarities(mat)
del mat
sims = pd.DataFrame(sims.todense())
sims = sims.rename({i: sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
sims['_subreddit'] = names.subreddit.values
outfile = str(Path(outdir) / str(week))
write_weekly_similarities(outfile, sims, week, names)
def pull_weeks(batch):
return set(batch.to_pandas()['week'])
2020-12-09 01:32:20 +00:00
#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet')
def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, max_df=None, included_subreddits = None, topN = 500):
2020-12-09 01:32:20 +00:00
print(outfile)
tfidf_ds = ds.dataset(tfidf_path)
tfidf_ds = tfidf_ds.to_table(columns=["week"])
batches = tfidf_ds.to_batches()
2020-12-09 01:32:20 +00:00
with Pool(cpu_count()) as pool:
weeks = set(chain( * pool.imap_unordered(pull_weeks,batches)))
2020-12-09 01:32:20 +00:00
weeks = sorted(weeks)
# do this step in parallel if we have the memory for it.
# should be doable with pool.map
2020-12-09 01:32:20 +00:00
print(f"computing weekly similarities")
week_similarities_helper = partial(_week_similarities,simfunc=column_similarities, tfidf_path=tfidf_path, term_colname=term_colname, outdir=outfile, min_df=min_df,max_df=max_df,included_subreddits=included_subreddits,topN=topN)
2020-12-09 01:32:20 +00:00
2021-04-22 17:37:04 +00:00
with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine?
list(pool.map(week_similarities_helper,weeks))
2020-12-09 01:32:20 +00:00
def author_cosine_similarities_weekly(outfile, min_df=2, max_df=None, included_subreddits=None, topN=500):
2021-04-22 17:37:04 +00:00
return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet',
2020-12-09 01:32:20 +00:00
outfile,
'author',
min_df,
max_df,
2020-12-09 01:32:20 +00:00
included_subreddits,
topN)
def term_cosine_similarities_weekly(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500):
return cosine_similarities_weekly('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
outfile,
'term',
min_df,
max_df,
included_subreddits,
topN)
2020-12-09 01:32:20 +00:00
if __name__ == "__main__":
fire.Fire({'authors':author_cosine_similarities_weekly,
'terms':term_cosine_similarities_weekly})