Update code for clustering + tsne.
This commit is contained in:
parent
82d184d9c6
commit
f8ff8b2d0f
45
clustering.py
Normal file
45
clustering.py
Normal file
@ -0,0 +1,45 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.cluster import AffinityPropagation
|
||||
import fire
|
||||
|
||||
def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968):
|
||||
'''
|
||||
similarities: feather file with a dataframe of similarity scores
|
||||
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
|
||||
'''
|
||||
|
||||
df = pd.read_feather(similarities)
|
||||
n = df.shape[0]
|
||||
mat = np.array(df.drop('subreddit',1))
|
||||
mat[range(n),range(n)] = 1
|
||||
|
||||
preference = np.quantile(mat,preference_quantile)
|
||||
|
||||
clustering = AffinityPropagation(damping=damping,
|
||||
max_iter=max_iter,
|
||||
convergence_iter=convergence_iter,
|
||||
copy=False,
|
||||
preference=preference,
|
||||
affinity='precomputed',
|
||||
random_state=random_state).fit(mat)
|
||||
|
||||
|
||||
print(f"clustering took {clustering.n_iter_} iterations")
|
||||
clusters = clustering.labels_
|
||||
|
||||
print(f"found {len(set(clusters))} clusters")
|
||||
|
||||
cluster_data = pd.DataFrame({'subreddit': df.subreddit,'cluster':clustering.labels_})
|
||||
|
||||
cluster_sizes = cluster_data.groupby("cluster").count()
|
||||
print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
|
||||
|
||||
print(f"the median cluster has {cluster_sizes.subreddit.median()} members")
|
||||
|
||||
print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
|
||||
|
||||
cluster_data.to_feather(output)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(affinity_clustering)
|
Loading…
Reference in New Issue
Block a user