Update the core 4 simulations.
This commit is contained in:
		
							parent
							
								
									2cd447c327
								
							
						
					
					
						commit
						47e9367ed5
					
				| @ -71,21 +71,27 @@ parser <- add_argument(parser, "--outfile", help='output file', default='example | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.05) | ||||
| # parser <- add_argument(parser, "--zx_explained_variance", help='what proportion of the variance of x can be explained by z?', default=0.3) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) | ||||
| parser <- add_argument(parser, "--Bzx", help='coefficient of z on x?', default=1) | ||||
| args <- parse_args(parser) | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~x") | ||||
| 
 | ||||
| parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z") | ||||
| parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) | ||||
| parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3) | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| B0 <- 0 | ||||
| Bxy <- 0.3 | ||||
| Bzy <- -0.3 | ||||
| Bxy <- args$Bxy | ||||
| Bzy <- args$Bzy | ||||
| Bzx <- args$Bzx | ||||
| 
 | ||||
| if (args$m < args$N){ | ||||
| 
 | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, seed=args$seed + 500, y_explained_variance = args$y_explained_variance,  prediction_accuracy=args$prediction_accuracy) | ||||
| 
 | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'Bzx'=Bzx, 'seed'=args$seed, 'y_explained_variance' = args$y_explained_variance, 'zx_explained_variance' = args$zx_explained_variance, "prediction_accuracy"=args$prediction_accuracy, "error"="") | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='') | ||||
| 
 | ||||
|     outline <- run_simulation(df, result) | ||||
|     outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula)) | ||||
|      | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
|     if(file.exists(args$outfile)){ | ||||
|  | ||||
| @ -31,11 +31,11 @@ source("simulation_base.R") | ||||
| 
 | ||||
| ## one way to do it is by adding correlation to x.obs and y that isn't in w. | ||||
| ## in other words, the model is missing an important feature of x.obs that's related to y. | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8){ | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0.025, prediction_accuracy=0.73, y_bias=-0.8,accuracy_imbalance_difference=0.3){ | ||||
|     set.seed(seed) | ||||
|     # make w and y dependent | ||||
|     z <- rbinom(N, 1, 0.5) | ||||
|     x <- rbinom(N, 1, Bzx * z + 0.5) | ||||
|     z <- rbinom(N, 1, plogis(qlogis(0.5))) | ||||
|     x <- rbinom(N, 1, plogis(Bzx * z + qlogis(0.5))) | ||||
| 
 | ||||
|     y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bzy*z,Bxy*x)) * ((1-y_explained_variance)/y_explained_variance) | ||||
|     y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) | ||||
| @ -50,38 +50,94 @@ simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0. | ||||
|     } | ||||
| 
 | ||||
|     ## probablity of an error is correlated with y | ||||
|     p.correct <- plogis(y_bias*scale(y) + qlogis(prediction_accuracy)) | ||||
|     ## pz <- mean(z) | ||||
|     ## accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) | ||||
| 
 | ||||
|     acc.x0 <- p.correct[df[,x==0]] | ||||
|     acc.x1 <- p.correct[df[,x==1]] | ||||
|     ## # this works because of conditional probability | ||||
|     ## accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz)) | ||||
|     ## accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0 | ||||
| 
 | ||||
|     df[x==0,w:=rlogis(.N,qlogis(1-acc.x0))] | ||||
|     df[x==1,w:=rlogis(.N,qlogis(acc.x1))] | ||||
|     ## z0x0 <- df[(z==0) & (x==0)]$x | ||||
|     ## z0x1 <- df[(z==0) & (x==1)]$x | ||||
|     ## z1x0 <- df[(z==1) & (x==0)]$x | ||||
|     ## z1x1 <- df[(z==1) & (x==1)]$x | ||||
| 
 | ||||
|     df[,w_pred := as.integer(w>0.5)] | ||||
|     ## yz0x0 <- df[(z==0) & (x==0)]$y | ||||
|     ## yz0x1 <- df[(z==0) & (x==1)]$y | ||||
|     ## yz1x0 <- df[(z==1) & (x==0)]$y | ||||
|     ## yz1x1 <- df[(z==1) & (x==1)]$y | ||||
| 
 | ||||
|     ## nz0x0 <- nrow(df[(z==0) & (x==0)]) | ||||
|     ## nz0x1 <- nrow(df[(z==0) & (x==1)]) | ||||
|     ## nz1x0 <- nrow(df[(z==1) & (x==0)]) | ||||
|     ## nz1x1 <- nrow(df[(z==1) & (x==1)]) | ||||
| 
 | ||||
|     ## yz1 <- df[z==1]$y  | ||||
|     ## yz1 <- df[z==1]$y  | ||||
| 
 | ||||
|     ## # tranform yz0.1 into a logistic distribution with mean accuracy_z0 | ||||
|     ## acc.z0x0 <- plogis(0.5*scale(yz0x0) + qlogis(accuracy_z0)) | ||||
|     ## acc.z0x1 <- plogis(0.5*scale(yz0x1) + qlogis(accuracy_z0)) | ||||
|     ## acc.z1x0 <- plogis(1.5*scale(yz1x0) + qlogis(accuracy_z1)) | ||||
|     ## acc.z1x1 <- plogis(1.5*scale(yz1x1) + qlogis(accuracy_z1)) | ||||
| 
 | ||||
|     ## w0z0x0 <- (1-z0x0)**2 + (-1)**(1-z0x0) * acc.z0x0 | ||||
|     ## w0z0x1 <- (1-z0x1)**2 + (-1)**(1-z0x1) * acc.z0x1 | ||||
|     ## w0z1x0 <- (1-z1x0)**2 + (-1)**(1-z1x0) * acc.z1x0 | ||||
|     ## w0z1x1 <- (1-z1x1)**2 + (-1)**(1-z1x1) * acc.z1x1 | ||||
| 
 | ||||
|     ## ##perrorz0 <- w0z0*(pyz0) | ||||
|     ## ##perrorz1 <- w0z1*(pyz1) | ||||
| 
 | ||||
|     ## w0z0x0.noisy.odds <- rlogis(nz0x0,qlogis(w0z0x0)) | ||||
|     ## w0z0x1.noisy.odds <- rlogis(nz0x1,qlogis(w0z0x1)) | ||||
|     ## w0z1x0.noisy.odds <- rlogis(nz1x0,qlogis(w0z1x0)) | ||||
|     ## w0z1x1.noisy.odds <- rlogis(nz1x1,qlogis(w0z1x1)) | ||||
| 
 | ||||
|     ## df[(z==0)&(x==0),w:=plogis(w0z0x0.noisy.odds)] | ||||
|     ## df[(z==0)&(x==1),w:=plogis(w0z0x1.noisy.odds)]     | ||||
|     ## df[(z==1)&(x==0),w:=plogis(w0z1x0.noisy.odds)]     | ||||
|     ## df[(z==1)&(x==1),w:=plogis(w0z1x1.noisy.odds)]     | ||||
| 
 | ||||
|     ## df[,w_pred:=as.integer(w > 0.5)] | ||||
|     ## print(mean(df[z==0]$x == df[z==0]$w_pred)) | ||||
|     ## print(mean(df[z==1]$x == df[z==1]$w_pred)) | ||||
|     ## print(mean(df$w_pred == df$x)) | ||||
| 
 | ||||
|     odds.x1 <- qlogis(prediction_accuracy) + y_bias*qlogis(pnorm(scale(df[x==1]$y))) | ||||
|     odds.x0 <- qlogis(prediction_accuracy,lower.tail=F) + y_bias*qlogis(pnorm(scale(df[x==0]$y))) | ||||
| 
 | ||||
|     ## acc.x0 <- p.correct[df[,x==0]] | ||||
|     ## acc.x1 <- p.correct[df[,x==1]] | ||||
| 
 | ||||
|     df[x==0,w:=plogis(rlogis(.N,odds.x0))] | ||||
|     df[x==1,w:=plogis(rlogis(.N,odds.x1))] | ||||
| 
 | ||||
|     df[,w_pred := as.integer(w > 0.5)] | ||||
| 
 | ||||
|     print(mean(df[z==0]$x == df[z==0]$w_pred)) | ||||
|     print(mean(df[z==1]$x == df[z==1]$w_pred)) | ||||
|     print(mean(df$w_pred == df$x)) | ||||
|     print(mean(df[y>=0]$w_pred == df[y>=0]$x)) | ||||
|     print(mean(df[y<=0]$w_pred == df[y<=0]$x)) | ||||
| 
 | ||||
|     return(df) | ||||
| } | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models") | ||||
| parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| aparser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=51, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.01) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.8) | ||||
| parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) | ||||
| parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3) | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~x*y") | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y*z*x") | ||||
| parser <- add_argument(parser, "--y_bias", help='coefficient of y on the probability a classification is correct', default=-0.75) | ||||
| parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z") | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| @ -94,16 +150,17 @@ if(args$m < args$N){ | ||||
| 
 | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzx, Bzy, args$seed, args$y_explained_variance, args$prediction_accuracy, y_bias=args$y_bias) | ||||
| 
 | ||||
|     ## df.pc <- df[,.(x,y,z,w_pred)] | ||||
|     ## df.pc <- df[,.(x,y,z,w_pred,w)] | ||||
|     ##                                     #    df.pc <- df.pc[,err:=x-w_pred] | ||||
|     ## pc.df <- pc(suffStat=list(C=cor(df.pc),n=nrow(df.pc)),indepTest=gaussCItest,labels=names(df.pc),alpha=0.05) | ||||
|     ## plot(pc.df) | ||||
| 
 | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,error='') | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=args$Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'y_bias'=args$y_bias,'outcome_formula'=args$outcome_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, error='') | ||||
| 
 | ||||
|     outline <- run_simulation(df, result, outcome_formula=y~x+z, proxy_formula=as.formula(args$proxy_formula), truth_formula=x~z) | ||||
|     outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula)) | ||||
|      | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
|     | ||||
|  outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
|     if(file.exists(args$outfile)){ | ||||
|         logdata <- read_feather(args$outfile) | ||||
|         logdata <- rbind(logdata,as.data.table(outline), fill=TRUE) | ||||
|  | ||||
							
								
								
									
										109
									
								
								simulations/03_depvar.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										109
									
								
								simulations/03_depvar.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,109 @@ | ||||
| ### EXAMPLE 1: demonstrates how measurement error can lead to a type sign error in a covariate | ||||
| ### What kind of data invalidates fong + tyler? | ||||
| ### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. | ||||
| ### Even when you include the proxy variable in the regression. | ||||
| ### But with some ground truth and multiple imputation, you can fix it. | ||||
| 
 | ||||
| library(argparser) | ||||
| library(mecor) | ||||
| library(ggplot2) | ||||
| library(data.table) | ||||
| library(filelock) | ||||
| library(arrow) | ||||
| library(Amelia) | ||||
| library(Zelig) | ||||
| library(predictionError) | ||||
| options(amelia.parallel="no", | ||||
|         amelia.ncpus=1) | ||||
| setDTthreads(40) | ||||
| 
 | ||||
| source("simulation_base.R") | ||||
| 
 | ||||
| ## SETUP: | ||||
| ### we want to estimate x -> y; x is MAR | ||||
| ### we have x -> k; k -> w; x -> w is used to predict x via the model w. | ||||
| ### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments | ||||
| ### The labels x are binary, but the model provides a continuous predictor | ||||
| 
 | ||||
| ### simulation: | ||||
| #### how much power do we get from the model in the first place? (sweeping N and m) | ||||
| ####  | ||||
| 
 | ||||
| ## one way to do it is by adding correlation to x.obs and y that isn't in w. | ||||
| ## in other words, the model is missing an important feature of x.obs that's related to y. | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73){ | ||||
|     set.seed(seed) | ||||
| 
 | ||||
|     # make w and y dependent | ||||
|     z <- rbinom(N, 1, 0.5) | ||||
|     x <- rbinom(N, 1, 0.5) | ||||
| 
 | ||||
|     ystar <- Bzy * z + Bxy * x + B0 | ||||
|     y <- rbinom(N,1,plogis(ystar)) | ||||
| 
 | ||||
|     # glm(y ~ x + z, family="binomial") | ||||
| 
 | ||||
|     df <- data.table(x=x,y=y,ystar=ystar,z=z) | ||||
| 
 | ||||
|     if(m < N){ | ||||
|         df <- df[sample(nrow(df), m), y.obs := y] | ||||
|     } else { | ||||
|         df <- df[, y.obs := y] | ||||
|     } | ||||
|      | ||||
|     odds.y1 <- qlogis(prediction_accuracy) | ||||
|     odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) | ||||
| 
 | ||||
|     df[y==0,w:=plogis(rlogis(.N,odds.y0))] | ||||
|     df[y==1,w:=plogis(rlogis(.N,odds.y1))] | ||||
| 
 | ||||
|     df[,w_pred := as.integer(w > 0.5)] | ||||
| 
 | ||||
|     print(mean(df[x==0]$y == df[x==0]$w_pred)) | ||||
|     print(mean(df[x==1]$y == df[x==1]$w_pred)) | ||||
|     print(mean(df$w_pred == df$y)) | ||||
|     return(df) | ||||
| } | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models") | ||||
| parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.72) | ||||
| ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) | ||||
| ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) | ||||
| parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3) | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y") | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| B0 <- 0 | ||||
| Bxy <- args$Bxy | ||||
| Bzy <- args$Bzy | ||||
| 
 | ||||
| 
 | ||||
| if(args$m < args$N){ | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy) | ||||
| 
 | ||||
| #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
| 
 | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula)) | ||||
| 
 | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
| 
 | ||||
|     if(file.exists(args$outfile)){ | ||||
|         logdata <- read_feather(args$outfile) | ||||
|         logdata <- rbind(logdata,as.data.table(outline),fill=TRUE) | ||||
|     } else { | ||||
|         logdata <- as.data.table(outline) | ||||
|     } | ||||
| 
 | ||||
|     print(outline) | ||||
|     write_feather(logdata, args$outfile) | ||||
|     unlock(outfile_lock) | ||||
| } | ||||
| @ -31,13 +31,14 @@ source("simulation_base.R") | ||||
| 
 | ||||
| ## one way to do it is by adding correlation to x.obs and y that isn't in w. | ||||
| ## in other words, the model is missing an important feature of x.obs that's related to y. | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, accuracy_imbalance_difference=0.3){ | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, x_bias=-0.75){ | ||||
|     set.seed(seed) | ||||
| 
 | ||||
|     # make w and y dependent | ||||
|     z <- rbinom(N, 1, 0.5) | ||||
|     x <- rbinom(N, 1, 0.5) | ||||
| 
 | ||||
|     ystar <- Bzy * z + Bxy * x | ||||
|     ystar <- Bzy * z + Bxy * x + B0 | ||||
|     y <- rbinom(N,1,plogis(ystar)) | ||||
| 
 | ||||
|     # glm(y ~ x + z, family="binomial") | ||||
| @ -49,40 +50,18 @@ simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, ac | ||||
|     } else { | ||||
|         df <- df[, y.obs := y] | ||||
|     } | ||||
| 
 | ||||
|     df <- df[,w_pred:=y] | ||||
| 
 | ||||
|     pz <- mean(z) | ||||
| 
 | ||||
|     accuracy_imbalance_ratio <- (prediction_accuracy + accuracy_imbalance_difference/2) / (prediction_accuracy - accuracy_imbalance_difference/2) | ||||
| 
 | ||||
|     # this works because of conditional probability | ||||
|     accuracy_z0 <- prediction_accuracy / (pz*(accuracy_imbalance_ratio) + (1-pz)) | ||||
|     accuracy_z1 <- accuracy_imbalance_ratio * accuracy_z0 | ||||
| 
 | ||||
| 
 | ||||
|     yz0 <- df[z==0]$y | ||||
|     yz1 <- df[z==1]$y | ||||
|     nz1 <- nrow(df[z==1]) | ||||
|     nz0 <- nrow(df[z==0]) | ||||
| 
 | ||||
|     acc_z0 <- plogis(0.7*scale(yz0) + qlogis(accuracy_z0)) | ||||
|     acc_z1 <- plogis(1.3*scale(yz1) + qlogis(accuracy_z1)) | ||||
|      | ||||
|     w0z0 <- (1-yz0)**2 + (-1)**(1-yz0) * acc_z0 | ||||
|     w0z1 <- (1-yz1)**2 + (-1)**(1-yz1) * acc_z1 | ||||
|      | ||||
|     w0z0.noisy.odds <- rlogis(nz0,qlogis(w0z0)) | ||||
|     w0z1.noisy.odds <- rlogis(nz1,qlogis(w0z1)) | ||||
|     df[z==0,w:=plogis(w0z0.noisy.odds)] | ||||
|     df[z==1,w:=plogis(w0z1.noisy.odds)] | ||||
|     odds.y1 <- qlogis(prediction_accuracy) + x_bias*df[y==1]$x | ||||
|     odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) + x_bias*df[y==0]$x | ||||
| 
 | ||||
|     df[,w_pred:=as.integer(w > 0.5)] | ||||
|     df[y==0,w:=plogis(rlogis(.N,odds.y0))] | ||||
|     df[y==1,w:=plogis(rlogis(.N,odds.y1))] | ||||
| 
 | ||||
|     print(mean(df[y==0]$y == df[y==0]$w_pred)) | ||||
|     print(mean(df[y==1]$y == df[y==1]$w_pred)) | ||||
|     df[,w_pred := as.integer(w > 0.5)] | ||||
| 
 | ||||
|     print(mean(df[x==0]$y == df[x==0]$w_pred)) | ||||
|     print(mean(df[x==1]$y == df[x==1]$w_pred)) | ||||
|     print(mean(df$w_pred == df$y)) | ||||
| 
 | ||||
|     return(df) | ||||
| } | ||||
| 
 | ||||
| @ -92,21 +71,29 @@ parser <- add_argument(parser, "--m", default=500, help="m the number of ground | ||||
| parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) | ||||
| parser <- add_argument(parser, "--accuracy_imbalance_difference", help='how much more accurate is the predictive model for one class than the other?', default=0.3) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.8) | ||||
| ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) | ||||
| ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) | ||||
| parser <- add_argument(parser, "--x_bias", help='how is the classifier biased?', default=0.75) | ||||
| parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3) | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y*x") | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| B0 <- 0 | ||||
| Bxy <- 0.7 | ||||
| Bzy <- -0.7 | ||||
| Bxy <- args$Bxy | ||||
| Bzy <- args$Bzy | ||||
| 
 | ||||
| 
 | ||||
| if(args$m < args$N){ | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$accuracy_imbalance_difference) | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$x_bias_y0, args$x_bias_y1) | ||||
| 
 | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference) | ||||
| #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias'=args$x_bias,'x_bias'=args$x_bias,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
| 
 | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = y ~ x + z, proxy_formula = w_pred ~ y*x + y*z + z*x) | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula)) | ||||
| 
 | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										110
									
								
								simulations/04_depvar_differential.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										110
									
								
								simulations/04_depvar_differential.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,110 @@ | ||||
| ### EXAMPLE 1: demonstrates how measurement error can lead to a type sign error in a covariate | ||||
| ### What kind of data invalidates fong + tyler? | ||||
| ### Even when you have a good predictor, if it's biased against a covariate you can get the wrong sign. | ||||
| ### Even when you include the proxy variable in the regression. | ||||
| ### But with some ground truth and multiple imputation, you can fix it. | ||||
| 
 | ||||
| library(argparser) | ||||
| library(mecor) | ||||
| library(ggplot2) | ||||
| library(data.table) | ||||
| library(filelock) | ||||
| library(arrow) | ||||
| library(Amelia) | ||||
| library(Zelig) | ||||
| library(predictionError) | ||||
| options(amelia.parallel="no", | ||||
|         amelia.ncpus=1) | ||||
| setDTthreads(40) | ||||
| 
 | ||||
| source("simulation_base.R") | ||||
| 
 | ||||
| ## SETUP: | ||||
| ### we want to estimate x -> y; x is MAR | ||||
| ### we have x -> k; k -> w; x -> w is used to predict x via the model w. | ||||
| ### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments | ||||
| ### The labels x are binary, but the model provides a continuous predictor | ||||
| 
 | ||||
| ### simulation: | ||||
| #### how much power do we get from the model in the first place? (sweeping N and m) | ||||
| ####  | ||||
| 
 | ||||
| ## one way to do it is by adding correlation to x.obs and y that isn't in w. | ||||
| ## in other words, the model is missing an important feature of x.obs that's related to y. | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, x_bias=-0.75){ | ||||
|     set.seed(seed) | ||||
| 
 | ||||
|     # make w and y dependent | ||||
|     z <- rbinom(N, 1, 0.5) | ||||
|     x <- rbinom(N, 1, 0.5) | ||||
| 
 | ||||
|     ystar <- Bzy * z + Bxy * x + B0 | ||||
|     y <- rbinom(N,1,plogis(ystar)) | ||||
| 
 | ||||
|     # glm(y ~ x + z, family="binomial") | ||||
| 
 | ||||
|     df <- data.table(x=x,y=y,ystar=ystar,z=z) | ||||
| 
 | ||||
|     if(m < N){ | ||||
|         df <- df[sample(nrow(df), m), y.obs := y] | ||||
|     } else { | ||||
|         df <- df[, y.obs := y] | ||||
|     } | ||||
|      | ||||
|     odds.y1 <- qlogis(prediction_accuracy) + x_bias*df[y==1]$x | ||||
|     odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) + x_bias*df[y==0]$x | ||||
| 
 | ||||
|     df[y==0,w:=plogis(rlogis(.N,odds.y0))] | ||||
|     df[y==1,w:=plogis(rlogis(.N,odds.y1))] | ||||
| 
 | ||||
|     df[,w_pred := as.integer(w > 0.5)] | ||||
| 
 | ||||
|     print(mean(df[x==0]$y == df[x==0]$w_pred)) | ||||
|     print(mean(df[x==1]$y == df[x==1]$w_pred)) | ||||
|     print(mean(df$w_pred == df$y)) | ||||
|     return(df) | ||||
| } | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models") | ||||
| parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.8) | ||||
| ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) | ||||
| ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) | ||||
| parser <- add_argument(parser, "--x_bias", help='how is the classifier biased?', default=0.75) | ||||
| parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3) | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y+x") | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| B0 <- 0 | ||||
| Bxy <- args$Bxy | ||||
| Bzy <- args$Bzy | ||||
| 
 | ||||
| 
 | ||||
| if(args$m < args$N){ | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$x_bias) | ||||
| 
 | ||||
| #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias'=args$x_bias,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
| 
 | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula)) | ||||
| 
 | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
| 
 | ||||
|     if(file.exists(args$outfile)){ | ||||
|         logdata <- read_feather(args$outfile) | ||||
|         logdata <- rbind(logdata,as.data.table(outline),fill=TRUE) | ||||
|     } else { | ||||
|         logdata <- as.data.table(outline) | ||||
|     } | ||||
| 
 | ||||
|     print(outline) | ||||
|     write_feather(logdata, args$outfile) | ||||
|     unlock(outfile_lock) | ||||
| } | ||||
| @ -1,9 +1,9 @@ | ||||
| 
 | ||||
| SHELL=bash | ||||
| 
 | ||||
| Ns=[1000,3600,14400] | ||||
| ms=[75,150,300] | ||||
| seeds=[$(shell seq -s, 1 250)] | ||||
| Ns=[1000, 2000, 4000, 8000] | ||||
| ms=[100, 200, 400, 800] | ||||
| seeds=[$(shell seq -s, 1 100)] | ||||
| explained_variances=[0.1] | ||||
| 
 | ||||
| all:remembr.RDS | ||||
| @ -31,7 +31,7 @@ example_1.feather: example_1_jobs | ||||
| #	sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 example_1_jobs
 | ||||
| 
 | ||||
| example_2_jobs: 02_indep_differential.R simulation_base.R | ||||
| 	grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2.feather"],"y_explained_variance":${explained_variances}, "accuracy_imbalance_difference":[0.3], "Bzy":[0.3]}' --outfile example_2_jobs | ||||
| 	grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y*z*x"], "truth_formula":["x~z"]}' --outfile example_2_jobs | ||||
| 
 | ||||
| example_2.feather: example_2_jobs  | ||||
| 	rm -f example_2.feather | ||||
| @ -45,19 +45,26 @@ example_2.feather: example_2_jobs | ||||
| # 	rm -f example_2_B.feather
 | ||||
| # 	sbatch --wait --verbose --array=1-3000 run_simulation.sbatch 0 example_2_B_jobs
 | ||||
| 
 | ||||
| example_3_jobs: 03_depvar_differential.R simulation_base.R | ||||
| 	grid_sweep.py --command "Rscript 03_depvar_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_3.feather"], "y_explained_variance":${explained_variances}}' --outfile example_3_jobs | ||||
| example_3_jobs: 03_depvar.R simulation_base.R | ||||
| 	grid_sweep.py --command "Rscript 03_depvar.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_3.feather"], "y_explained_variance":${explained_variances}}' --outfile example_3_jobs | ||||
| 
 | ||||
| example_3.feather: example_3_jobs | ||||
| 	rm -f example_3.feather	 | ||||
| 	sbatch --wait --verbose --array=1-$(shell cat example_3_jobs | wc -l)  run_simulation.sbatch 0 example_3_jobs | ||||
| 
 | ||||
| example_4_jobs: 04_depvar_differential.R simulation_base.R | ||||
| 	grid_sweep.py --command "Rscript 04_depvar_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_4.feather"], "y_explained_variance":${explained_variances}}' --outfile example_4_jobs | ||||
| 
 | ||||
| remembr.RDS:example_1.feather example_2.feather example_3.feather plot_example.R plot_dv_example.R | ||||
| example_4.feather: example_4_jobs | ||||
| 	rm -f example_4.feather	 | ||||
| 	sbatch --wait --verbose --array=1-$(shell cat example_4_jobs | wc -l)  run_simulation.sbatch 0 example_4_jobs | ||||
| 
 | ||||
| remembr.RDS:example_1.feather example_2.feather example_3.feather example_4.feather plot_example.R plot_dv_example.R | ||||
| 	rm -f remembr.RDS | ||||
| 	${srun} Rscript plot_example.R --infile example_1.feather --name "plot.df.example.1" | ||||
| 	${srun} Rscript plot_example.R --infile example_2.feather --name "plot.df.example.2" | ||||
| 	${srun} Rscript plot_dv_example.R --infile example_3.feather --name "plot.df.example.3" | ||||
| 	${srun} Rscript plot_dv_example.R --infile example_4.feather --name "plot.df.example.4" | ||||
| 
 | ||||
| clean: | ||||
| 	rm *.feather | ||||
|  | ||||
| @ -57,7 +57,7 @@ measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='lo | ||||
|         df.unobs.y1 <- copy(df.unobs) | ||||
|         df.unobs.y1[[response.var]] <- 1 | ||||
|         df.unobs.y0 <- copy(df.unobs) | ||||
|         df.unobs.y0[[response.var]] <- 1 | ||||
|         df.unobs.y0[[response.var]] <- 0 | ||||
|          | ||||
|         ## integrate out y | ||||
|         outcome.model.matrix.y1 <- model.matrix(outcome_formula, df.unobs.y1) | ||||
| @ -124,6 +124,8 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
|         if(outcome_family$family == "gaussian"){ | ||||
|             sigma.y <- params[param.idx] | ||||
|             param.idx <- param.idx + 1 | ||||
| 
 | ||||
|             #  outcome_formula likelihood using linear regression | ||||
|             ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE) | ||||
|         } | ||||
|          | ||||
| @ -135,6 +137,8 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
| 
 | ||||
|         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ | ||||
|             ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) | ||||
| 
 | ||||
|             # proxy_formula likelihood using logistic regression | ||||
|             ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE) | ||||
|             ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) | ||||
|         } | ||||
| @ -149,10 +153,13 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
| 
 | ||||
|         if( (truth_family$family=="binomial") & (truth_family$link=='logit')){ | ||||
|             ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1]) | ||||
| 
 | ||||
|             # truth_formula likelihood using logistic regression | ||||
|             ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE) | ||||
|             ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE) | ||||
|         } | ||||
|          | ||||
|         # add the three likelihoods | ||||
|         ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs) | ||||
| 
 | ||||
|         ## likelihood for the predicted data | ||||
| @ -169,6 +176,8 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
|             outcome.model.matrix.x0 <- model.matrix(outcome_formula, df.unobs.x0) | ||||
|             outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1) | ||||
|             if(outcome_family$family=="gaussian"){ | ||||
| 
 | ||||
|                 # likelihood of outcome | ||||
|             ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE) | ||||
|             ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE) | ||||
|             } | ||||
| @ -181,6 +190,7 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
|                 ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1]) | ||||
|                 ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1]) | ||||
| 
 | ||||
|                 # likelihood of proxy | ||||
|                 ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE) | ||||
|                 ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE) | ||||
| 
 | ||||
| @ -190,8 +200,9 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
| 
 | ||||
|             if(truth_family$link=='logit'){ | ||||
|                 truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0) | ||||
|                 ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE) | ||||
|                 ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE) | ||||
|                 # likelihood of truth | ||||
|                 ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE) | ||||
|                 ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE) | ||||
|             } | ||||
|         } | ||||
| 
 | ||||
|  | ||||
| @ -21,8 +21,7 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){ | ||||
|                   paste0('B',coefname,'y.ci.lower.',suffix), | ||||
|                   paste0('B',coefname,'y.ci.upper.',suffix), | ||||
|                   'y_explained_variance', | ||||
|                   'Bzy', | ||||
|                   'accuracy_imbalance_difference' | ||||
|                   'Bzy' | ||||
|                   ), | ||||
|                with=FALSE] | ||||
|      | ||||
| @ -47,7 +46,7 @@ summarize.estimator <- function(df, suffix='naive', coefname='x'){ | ||||
|                           variable=coefname, | ||||
|                           method=suffix | ||||
|                           ), | ||||
|                       by=c("N","m",'Bzy','accuracy_imbalance_difference','y_explained_variance') | ||||
|                       by=c("N","m",'Bzy','y_explained_variance') | ||||
|                       ] | ||||
|      | ||||
|     return(part.plot) | ||||
|  | ||||
| @ -99,6 +99,7 @@ build_plot_dataset <- function(df){ | ||||
| 
 | ||||
| 
 | ||||
| plot.df <- read_feather(args$infile) | ||||
| print(unique(plot.df$N)) | ||||
| 
 | ||||
| # df <- df[apply(df,1,function(x) !any(is.na(x)))] | ||||
| 
 | ||||
|  | ||||
| @ -41,21 +41,26 @@ my.pseudo.mle <- function(df){ | ||||
| ## Zhang got this model from Hausman 1998 | ||||
| ### I think this is actually eqivalent to the pseudo.mle method | ||||
| zhang.mle.iv <- function(df){ | ||||
|     nll <- function(B0=0, Bxy=0, Bzy=0, sigma_y=0.1, ppv=0.9, npv=0.9){ | ||||
|     df.obs <- df[!is.na(x.obs)] | ||||
|     df.unobs <- df[is.na(x.obs)] | ||||
| 
 | ||||
|     tn <- df.obs[(w_pred == 0) & (x.obs == w_pred),.N] | ||||
|     pn <- df.obs[(w_pred==0), .N] | ||||
|     npv <- tn / pn | ||||
| 
 | ||||
|     tp <- df.obs[(w_pred==1) & (x.obs == w_pred),.N] | ||||
|     pp <- df.obs[(w_pred==1),.N] | ||||
|     ppv <- tp / pp | ||||
| 
 | ||||
|     nll <- function(B0=0, Bxy=0, Bzy=0, sigma_y=0.1){ | ||||
| 
 | ||||
|     ## fpr = 1 - TNR | ||||
|     ### Problem: accounting for uncertainty in ppv / npv | ||||
|      | ||||
|     ll.w1x1.obs <- with(df.obs[(w_pred==1)], dbinom(x.obs,size=1,prob=ppv,log=T)) | ||||
|     ll.w0x0.obs <- with(df.obs[(w_pred==0)], dbinom(1-x.obs,size=1,prob=npv,log=T)) | ||||
| 
 | ||||
|     ## fnr = 1 - TPR | ||||
|     ll.y.obs <- with(df.obs, dnorm(y, B0 + Bxy * x + Bzy * z, sd=sigma_y,log=T)) | ||||
|     ll <- sum(ll.y.obs) | ||||
|     ll <- ll + sum(ll.w1x1.obs) + sum(ll.w0x0.obs) | ||||
| 
 | ||||
|      | ||||
|     # unobserved case; integrate out x | ||||
|     ll.x.1 <- with(df.unobs, dnorm(y, B0 + Bxy + Bzy * z, sd = sigma_y, log=T)) | ||||
|     ll.x.0 <- with(df.unobs, dnorm(y, B0 + Bzy * z, sd = sigma_y,log=T)) | ||||
| @ -66,55 +71,90 @@ zhang.mle.iv <- function(df){ | ||||
|     ## case x == 0 | ||||
|     lls.x.0 <- colLogSumExps(rbind(log(1-npv) + ll.x.1, log(npv) + ll.x.0)) | ||||
| 
 | ||||
|     lls <- colLogSumExps(rbind(lls.x.1, lls.x.0)) | ||||
|     lls <- colLogSumExps(rbind(df.unobs$w_pred * lls.x.1, (1-df.unobs$w_pred) * lls.x.0)) | ||||
|     ll <- ll + sum(lls) | ||||
|     return(-ll) | ||||
|     }     | ||||
|     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6), lower=list(sigma_y=0.0001, B0=-Inf, Bxy=-Inf, Bzy=-Inf,ppv=0.00001, npv=0.00001), | ||||
|                    upper=list(sigma_y=Inf, B0=Inf, Bxy=Inf, Bzy=Inf, ppv=0.99999,npv=0.99999),method='L-BFGS-B') | ||||
|     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6), lower=list(sigma_y=0.0001, B0=-Inf, Bxy=-Inf, Bzy=-Inf), | ||||
|                    upper=list(sigma_y=Inf, B0=Inf, Bxy=Inf, Bzy=Inf),method='L-BFGS-B') | ||||
|     return(mlefit) | ||||
| } | ||||
| 
 | ||||
| ## this is equivalent to the pseudo-liklihood model from Carolla | ||||
| zhang.mle.dv <- function(df){ | ||||
| ## this is equivalent to the pseudo-liklihood model from Caroll | ||||
| ## zhang.mle.dv <- function(df){ | ||||
| 
 | ||||
|     nll <- function(B0=0, Bxy=0, Bzy=0, ppv=0.9, npv=0.9){ | ||||
|     df.obs <- df[!is.na(y.obs)] | ||||
| ##     nll <- function(B0=0, Bxy=0, Bzy=0, ppv=0.9, npv=0.9){ | ||||
| ##     df.obs <- df[!is.na(y.obs)] | ||||
| 
 | ||||
|     ## fpr = 1 - TNR | ||||
|     ll.w0y0 <- with(df.obs[y.obs==0],dbinom(1-w_pred,1,npv,log=TRUE)) | ||||
|     ll.w1y1 <- with(df.obs[y.obs==1],dbinom(w_pred,1,ppv,log=TRUE)) | ||||
| ##     ## fpr = 1 - TNR | ||||
| ##     ll.w0y0 <- with(df.obs[y.obs==0],dbinom(1-w_pred,1,npv,log=TRUE)) | ||||
| ##     ll.w1y1 <- with(df.obs[y.obs==1],dbinom(w_pred,1,ppv,log=TRUE)) | ||||
| 
 | ||||
|     # observed case | ||||
|     ll.y.obs <- vector(mode='numeric', length=nrow(df.obs)) | ||||
|     ll.y.obs[df.obs$y.obs==1] <- with(df.obs[y.obs==1], plogis(B0 + Bxy * x + Bzy * z,log=T)) | ||||
|     ll.y.obs[df.obs$y.obs==0] <- with(df.obs[y.obs==0], plogis(B0 + Bxy * x + Bzy * z,log=T,lower.tail=FALSE)) | ||||
| ##     # observed case | ||||
| ##     ll.y.obs <- vector(mode='numeric', length=nrow(df.obs)) | ||||
| ##     ll.y.obs[df.obs$y.obs==1] <- with(df.obs[y.obs==1], plogis(B0 + Bxy * x + Bzy * z,log=T)) | ||||
| ##     ll.y.obs[df.obs$y.obs==0] <- with(df.obs[y.obs==0], plogis(B0 + Bxy * x + Bzy * z,log=T,lower.tail=FALSE)) | ||||
| 
 | ||||
|     ll <- sum(ll.y.obs) + sum(ll.w0y0) + sum(ll.w1y1) | ||||
| ##     ll <- sum(ll.y.obs) + sum(ll.w0y0) + sum(ll.w1y1) | ||||
| 
 | ||||
|     # unobserved case; integrate out y | ||||
|     ## case y = 1 | ||||
|     ll.y.1 <- vector(mode='numeric', length=nrow(df)) | ||||
|     pi.y.1 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T)) | ||||
|     ## P(w=1| y=1)P(y=1) + P(w=0|y=1)P(y=1) = P(w=1,y=1) + P(w=0,y=1) | ||||
|     lls.y.1 <- colLogSumExps(rbind(log(ppv) + pi.y.1, log(1-ppv) + pi.y.1)) | ||||
| ##     # unobserved case; integrate out y | ||||
| ##     ## case y = 1 | ||||
| ##     ll.y.1 <- vector(mode='numeric', length=nrow(df)) | ||||
| ##     pi.y.1 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T)) | ||||
| ##     ## P(w=1| y=1)P(y=1) + P(w=0|y=1)P(y=1) = P(w=1,y=1) + P(w=0,y=1) | ||||
| ##     lls.y.1 <- colLogSumExps(rbind(log(ppv) + pi.y.1, log(1-ppv) + pi.y.1)) | ||||
|      | ||||
|     ## case y = 0 | ||||
|     ll.y.0 <- vector(mode='numeric', length=nrow(df)) | ||||
|     pi.y.0 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T,lower.tail=FALSE)) | ||||
| ##     ## case y = 0 | ||||
| ##     ll.y.0 <- vector(mode='numeric', length=nrow(df)) | ||||
| ##     pi.y.0 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T,lower.tail=FALSE)) | ||||
| 
 | ||||
|     ## P(w=1 | y=0)P(y=0) + P(w=0|y=0)P(y=0) = P(w=1,y=0) + P(w=0,y=0) | ||||
|     lls.y.0 <- colLogSumExps(rbind(log(npv) + pi.y.0, log(1-npv) + pi.y.0)) | ||||
| ##     ## P(w=1 | y=0)P(y=0) + P(w=0|y=0)P(y=0) = P(w=1,y=0) + P(w=0,y=0) | ||||
| ##     lls.y.0 <- colLogSumExps(rbind(log(npv) + pi.y.0, log(1-npv) + pi.y.0)) | ||||
| 
 | ||||
|     lls <- colLogSumExps(rbind(lls.y.1, lls.y.0)) | ||||
|     ll <- ll + sum(lls) | ||||
|     return(-ll) | ||||
| ##     lls <- colLogSumExps(rbind(lls.y.1, lls.y.0)) | ||||
| ##     ll <- ll + sum(lls) | ||||
| ##     return(-ll) | ||||
| ##     }     | ||||
| ##     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6),method='L-BFGS-B',lower=list(B0=-Inf, Bxy=-Inf, Bzy=-Inf, ppv=0.001,npv=0.001), | ||||
| ##                    upper=list(B0=Inf, Bxy=Inf, Bzy=Inf,ppv=0.999,npv=0.999)) | ||||
| ##     return(mlefit) | ||||
| ## } | ||||
| 
 | ||||
| zhang.mle.dv <- function(df){ | ||||
|     df.obs <- df[!is.na(y.obs)] | ||||
|     df.unobs <- df[is.na(y.obs)] | ||||
| 
 | ||||
|     fp <- df.obs[(w_pred==1) & (y.obs != w_pred),.N] | ||||
|     p <- df.obs[(w_pred==1),.N] | ||||
|     fpr <- fp / p | ||||
|     fn <- df.obs[(w_pred==0) & (y.obs != w_pred), .N] | ||||
|     n <- df.obs[(w_pred==0),.N] | ||||
|     fnr <- fn / n | ||||
| 
 | ||||
|     nll <- function(B0=0, Bxy=0, Bzy=0){ | ||||
| 
 | ||||
| 
 | ||||
|         ## observed case | ||||
|         ll.y.obs <- vector(mode='numeric', length=nrow(df.obs)) | ||||
|         ll.y.obs[df.obs$y.obs==1] <- with(df.obs[y.obs==1], plogis(B0 + Bxy * x + Bzy * z,log=T)) | ||||
|         ll.y.obs[df.obs$y.obs==0] <- with(df.obs[y.obs==0], plogis(B0 + Bxy * x + Bzy * z,log=T,lower.tail=FALSE)) | ||||
| 
 | ||||
|         ll <- sum(ll.y.obs) | ||||
| 
 | ||||
|         pi.y.1 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T)) | ||||
|         pi.y.0 <- with(df,plogis(B0 + Bxy * x + Bzy*z, log=T,lower.tail=FALSE)) | ||||
| 
 | ||||
|         lls <- with(df.unobs, colLogSumExps(rbind(w_pred * colLogSumExps(rbind(log(fpr), log(1 - fnr - fpr)+pi.y.1)), | ||||
|         (1-w_pred) * colLogSumExps(rbind(log(1-fpr), log(1 - fnr - fpr)+pi.y.0))))) | ||||
|      | ||||
|         ll <- ll + sum(lls) | ||||
|         return(-ll) | ||||
|     }     | ||||
|     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6),method='L-BFGS-B',lower=list(B0=-Inf, Bxy=-Inf, Bzy=-Inf, ppv=0.001,npv=0.001), | ||||
|                    upper=list(B0=Inf, Bxy=Inf, Bzy=Inf,ppv=0.999,npv=0.999)) | ||||
|     mlefit <- mle2(minuslogl = nll, control=list(maxit=1e6),method='L-BFGS-B',lower=c(B0=-Inf, Bxy=-Inf, Bzy=-Inf), | ||||
|                    upper=c(B0=Inf, Bxy=Inf, Bzy=Inf)) | ||||
|     return(mlefit) | ||||
| } | ||||
| 
 | ||||
|   | ||||
| ## This uses the likelihood approach from Carroll page 353. | ||||
| ## assumes that we have a good measurement error model | ||||
| my.mle <- function(df){ | ||||
| @ -211,7 +251,7 @@ run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formu | ||||
|     naivecont.ci.Bxy <- confint(model.naive.cont)['x',] | ||||
|     naivecont.ci.Bzy <- confint(model.naive.cont)['z',] | ||||
| 
 | ||||
|     ## my implementatoin of liklihood based correction | ||||
|     ## my implementation of liklihood based correction | ||||
| 
 | ||||
|     temp.df <- copy(df) | ||||
|     temp.df[,y:=y.obs] | ||||
| @ -241,7 +281,8 @@ run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formu | ||||
|                           Bzy.est.zhang = coef['Bzy'], | ||||
|                           Bzy.ci.upper.zhang = ci['Bzy','97.5 %'], | ||||
|                           Bzy.ci.lower.zhang = ci['Bzy','2.5 %'])) | ||||
|                            | ||||
| 
 | ||||
|      | ||||
| 
 | ||||
|     # amelia says use normal distribution for binary variables. | ||||
|     tryCatch({ | ||||
| @ -278,7 +319,7 @@ run_simulation_depvar <- function(df, result, outcome_formula=y~x+z, proxy_formu | ||||
| 
 | ||||
| 
 | ||||
| ## outcome_formula, proxy_formula, and truth_formula are passed to measerr_mle  | ||||
| run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=w_pred~x, truth_formula=x~z){ | ||||
| run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=NULL, truth_formula=NULL){ | ||||
| 
 | ||||
|     accuracy <- df[,mean(w_pred==x)] | ||||
|     result <- append(result, list(accuracy=accuracy)) | ||||
| @ -320,7 +361,7 @@ run_simulation <-  function(df, result, outcome_formula=y~x+z, proxy_formula=w_p | ||||
|                                    | ||||
| 
 | ||||
|     tryCatch({ | ||||
|     amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w_pred')) | ||||
|     amelia.out.k <- amelia(df, m=200, p2s=0, idvars=c('x','w')) | ||||
|     mod.amelia.k <- zelig(y~x.obs+z, model='ls', data=amelia.out.k$imputations, cite=FALSE) | ||||
|     (coefse <- combine_coef_se(mod.amelia.k, messages=FALSE)) | ||||
| 
 | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user