13
0
cdsc_reddit/similarities/weekly_cosine_similarities.py

144 lines
7.2 KiB
Python
Raw Permalink Normal View History

2021-08-12 05:48:33 +00:00
#!/usr/bin/env python3
2020-12-09 01:32:20 +00:00
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
from pyspark.sql import Window
import numpy as np
import pyarrow
import pyarrow.dataset as ds
2020-12-09 01:32:20 +00:00
import pandas as pd
import fire
from itertools import islice, chain
2020-12-09 01:32:20 +00:00
from pathlib import Path
2021-08-12 05:48:33 +00:00
from similarities_helper import pull_tfidf, column_similarities, write_weekly_similarities, lsi_column_similarities
from scipy.sparse import csr_matrix
2021-04-22 17:37:04 +00:00
from multiprocessing import Pool, cpu_count
from functools import partial
2020-12-09 01:32:20 +00:00
2021-08-12 05:48:33 +00:00
infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_10k.parquet"
tfidf_path = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/tfidf/comment_authors_compex.parquet"
min_df=None
included_subreddits="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/included_subreddits.txt"
max_df = None
topN=100
term_colname='author'
# outfile = '/gscratch/comdata/output/reddit_similarity/weekly/comment_authors_test.parquet'
# included_subreddits=None
def _week_similarities(week, simfunc, tfidf_path, term_colname, min_df, max_df, included_subreddits, topN, outdir:Path, subreddit_names, nterms):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
print(f"loading matrix: {week}")
entries = pull_tfidf(infile = tfidf_path,
term_colname=term_colname,
min_df=min_df,
max_df=max_df,
included_subreddits=included_subreddits,
topN=topN,
2021-08-12 05:48:33 +00:00
week=week,
rescale_idf=False)
tfidf_colname='tf_idf'
# if the max subreddit id we found is less than the number of subreddit names then we have to fill in 0s
mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1)),shape=(nterms,subreddit_names.shape[0]))
print('computing similarities')
2021-08-12 05:48:33 +00:00
sims = simfunc(mat)
del mat
sims = pd.DataFrame(sims)
sims = sims.rename({i: sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
sims['_subreddit'] = subreddit_names.subreddit.values
outfile = str(Path(outdir) / str(week))
write_weekly_similarities(outfile, sims, week, subreddit_names)
def pull_weeks(batch):
return set(batch.to_pandas()['week'])
2020-12-09 01:32:20 +00:00
2021-08-12 05:48:33 +00:00
# This requires a prefit LSI model, since we shouldn't fit different LSI models for every week.
def cosine_similarities_weekly_lsi(n_components=100, lsi_model=None, *args, **kwargs):
term_colname= kwargs.get('term_colname')
#lsi_model = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_terms_compex_LSI/1000_term_LSIMOD.pkl"
# simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm='randomized',lsi_model_load=lsi_model)
simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=kwargs.get('n_iter'),random_state=kwargs.get('random_state'),algorithm=kwargs.get('algorithm'),lsi_model_load=lsi_model)
return cosine_similarities_weekly(*args, simfunc=simfunc, **kwargs)
2020-12-09 01:32:20 +00:00
#tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_weekly.parquet')
2021-08-12 05:48:33 +00:00
def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, max_df=None, included_subreddits = None, topN = 500, simfunc=column_similarities):
2020-12-09 01:32:20 +00:00
print(outfile)
# do this step in parallel if we have the memory for it.
# should be doable with pool.map
2020-12-09 01:32:20 +00:00
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet(tfidf_path)
2021-08-12 05:48:33 +00:00
# load subreddits + topN
subreddit_names = df.select(['subreddit','subreddit_id']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id")
nterms = df.select(f.max(f.col(term_colname + "_id")).alias('max')).collect()[0].max
weeks = df.select(f.col("week")).distinct().toPandas().week.values
spark.stop()
print(f"computing weekly similarities")
2021-08-12 05:48:33 +00:00
week_similarities_helper = partial(_week_similarities,simfunc=simfunc, tfidf_path=tfidf_path, term_colname=term_colname, outdir=outfile, min_df=min_df,max_df=max_df,included_subreddits=included_subreddits,topN=topN, subreddit_names=subreddit_names,nterms=nterms)
pool = Pool(cpu_count())
list(pool.imap(week_similarities_helper,weeks))
pool.close()
# with Pool(cpu_count()) as pool: # maybe it can be done with 40 cores on the huge machine?
2020-12-09 01:32:20 +00:00
2021-08-12 05:48:33 +00:00
def author_cosine_similarities_weekly(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_test.parquet', min_df=2, max_df=None, included_subreddits=None, topN=500):
return cosine_similarities_weekly(infile,
2020-12-09 01:32:20 +00:00
outfile,
'author',
min_df,
max_df,
2020-12-09 01:32:20 +00:00
included_subreddits,
topN)
2021-08-12 05:48:33 +00:00
def term_cosine_similarities_weekly(outfile, infile='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', min_df=None, max_df=None, included_subreddits=None, topN=None):
return cosine_similarities_weekly(infile,
outfile,
'term',
min_df,
max_df,
included_subreddits,
topN)
2020-12-09 01:32:20 +00:00
2021-08-12 05:48:33 +00:00
def author_cosine_similarities_weekly_lsi(outfile, infile = '/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_test.parquet', min_df=2, max_df=None, included_subreddits=None, topN=None,n_components=100,lsi_model=None):
return cosine_similarities_weekly_lsi(infile,
outfile,
'author',
min_df,
max_df,
included_subreddits,
topN,
n_components=n_components,
lsi_model=lsi_model)
def term_cosine_similarities_weekly_lsi(outfile, infile = '/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', min_df=None, max_df=None, included_subreddits=None, topN=500,n_components=100,lsi_model=None):
return cosine_similarities_weekly_lsi(infile,
outfile,
'term',
min_df,
max_df,
included_subreddits,
topN,
n_components=n_components,
lsi_model=lsi_model)
2020-12-09 01:32:20 +00:00
if __name__ == "__main__":
fire.Fire({'authors':author_cosine_similarities_weekly,
2021-08-12 05:48:33 +00:00
'terms':term_cosine_similarities_weekly,
'authors-lsi':author_cosine_similarities_weekly_lsi,
'terms-lsi':term_cosine_similarities_weekly
})