2020-11-02 18:40:02 +00:00
|
|
|
from pyspark.sql import functions as f
|
|
|
|
from pyspark.sql import SparkSession
|
|
|
|
from pyspark.sql import Window
|
|
|
|
from pyspark.mllib.linalg.distributed import RowMatrix, CoordinateMatrix
|
|
|
|
import numpy as np
|
|
|
|
import pyarrow
|
|
|
|
import pandas as pd
|
|
|
|
import fire
|
|
|
|
from itertools import islice
|
|
|
|
from pathlib import Path
|
2020-11-17 20:52:48 +00:00
|
|
|
from similarities_helper import cosine_similarities, prep_tfidf_entries, read_tfidf_matrix, column_similarities
|
|
|
|
import scipy
|
|
|
|
# outfile='test_similarities_500.feather';
|
|
|
|
# min_df = None;
|
|
|
|
# included_subreddits=None; topN=100; exclude_phrases=True;
|
|
|
|
|
|
|
|
def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500, exclude_phrases=False):
|
|
|
|
spark = SparkSession.builder.getOrCreate()
|
|
|
|
conf = spark.sparkContext.getConf()
|
2020-11-10 21:18:57 +00:00
|
|
|
print(outfile)
|
|
|
|
print(exclude_phrases)
|
|
|
|
|
2020-11-02 18:40:02 +00:00
|
|
|
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
|
|
|
|
|
|
|
if included_subreddits is None:
|
2020-11-17 20:52:48 +00:00
|
|
|
rankdf = pd.read_csv("/gscratch/comdata/users/nathante/cdsc-reddit/subreddits_by_num_comments.csv")
|
|
|
|
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
|
2020-11-02 18:40:02 +00:00
|
|
|
|
|
|
|
else:
|
|
|
|
included_subreddits = set(open(included_subreddits))
|
|
|
|
|
2020-11-10 21:18:57 +00:00
|
|
|
if exclude_phrases == True:
|
|
|
|
tfidf = tfidf.filter(~f.col(term).contains("_"))
|
2020-11-02 18:40:02 +00:00
|
|
|
|
2020-11-17 20:52:48 +00:00
|
|
|
print("creating temporary parquet with matrix indicies")
|
|
|
|
tempdir = prep_tfidf_entries(tfidf, 'term', min_df, included_subreddits)
|
|
|
|
tfidf = spark.read.parquet(tempdir.name)
|
|
|
|
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
|
|
|
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
|
|
|
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
|
|
|
spark.stop()
|
|
|
|
|
|
|
|
print("loading matrix")
|
|
|
|
mat = read_tfidf_matrix(tempdir.name,'term')
|
|
|
|
print('computing similarities')
|
|
|
|
sims = column_similarities(mat)
|
|
|
|
del mat
|
|
|
|
|
|
|
|
sims = pd.DataFrame(sims.todense())
|
|
|
|
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
|
|
|
|
sims['subreddit'] = subreddit_names.subreddit.values
|
2020-11-02 18:40:02 +00:00
|
|
|
|
2020-11-10 21:18:57 +00:00
|
|
|
p = Path(outfile)
|
2020-11-02 18:40:02 +00:00
|
|
|
|
2020-11-10 21:18:57 +00:00
|
|
|
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
|
|
|
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
|
|
|
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
2020-11-02 18:40:02 +00:00
|
|
|
|
2020-11-17 20:52:48 +00:00
|
|
|
sims.to_feather(outfile)
|
|
|
|
tempdir.cleanup()
|
|
|
|
path = "term_tfidf_entriesaukjy5gv.parquet"
|
2020-11-10 21:18:57 +00:00
|
|
|
|
2020-11-02 18:40:02 +00:00
|
|
|
|
2020-11-17 20:52:48 +00:00
|
|
|
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
|
|
|
|
# def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
|
|
|
|
# '''
|
|
|
|
# Compute similarities between subreddits based on tfi-idf vectors of comment texts
|
|
|
|
|
|
|
|
# included_subreddits : string
|
|
|
|
# Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
|
|
|
|
|
|
|
|
# similarity_threshold : double (default = 0)
|
|
|
|
# set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
|
|
|
|
# https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
|
|
|
|
|
|
|
|
# min_df : int (default = 0.1 * (number of included_subreddits)
|
|
|
|
# exclude terms that appear in fewer than this number of documents.
|
|
|
|
|
|
|
|
# outfile: string
|
|
|
|
# where to output csv and feather outputs
|
|
|
|
# '''
|
|
|
|
|
|
|
|
# print(outfile)
|
|
|
|
# print(exclude_phrases)
|
|
|
|
|
|
|
|
# tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
|
|
|
|
|
|
|
# if included_subreddits is None:
|
|
|
|
# included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
|
|
|
# included_subreddits = {s.strip('\n') for s in included_subreddits}
|
|
|
|
|
|
|
|
# else:
|
|
|
|
# included_subreddits = set(open(included_subreddits))
|
|
|
|
|
|
|
|
# if exclude_phrases == True:
|
|
|
|
# tfidf = tfidf.filter(~f.col(term).contains("_"))
|
|
|
|
|
|
|
|
# sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, included_subreddits, similarity_threshold)
|
|
|
|
|
|
|
|
# p = Path(outfile)
|
|
|
|
|
|
|
|
# output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
|
|
|
# output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
|
|
|
# output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
|
|
|
|
|
|
|
# sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
|
|
|
|
|
|
|
# #instead of toLocalMatrix() why not read as entries and put strait into numpy
|
|
|
|
# sim_entries = pd.read_parquet(output_parquet)
|
|
|
|
|
|
|
|
# df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
|
|
|
# spark.stop()
|
|
|
|
# df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
|
|
|
# df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
|
|
|
# df = df.set_index('subreddit_id_new')
|
|
|
|
|
|
|
|
# similarities = sim_entries.join(df, on='i')
|
|
|
|
# similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
|
|
|
# similarities = similarities.join(df, on='j')
|
|
|
|
# similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
|
|
|
|
|
|
|
# similarities.to_feather(output_feather)
|
|
|
|
# similarities.to_csv(output_csv)
|
|
|
|
# return similarities
|
2020-11-02 18:40:02 +00:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
2020-11-10 21:18:57 +00:00
|
|
|
fire.Fire(term_cosine_similarities)
|