update simulation and mle code
This commit is contained in:
		
							parent
							
								
									47e9367ed5
								
							
						
					
					
						commit
						979dc14b68
					
				| @ -125,7 +125,7 @@ simulate_data <- function(N, m, B0, Bxy, Bzx, Bzy, seed, y_explained_variance=0. | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models") | ||||
| parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") | ||||
| aparser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=51, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1) | ||||
|  | ||||
| @ -70,7 +70,7 @@ parser <- add_argument(parser, "--N", default=1000, help="number of observations | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005) | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.1) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.72) | ||||
| ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) | ||||
| ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) | ||||
|  | ||||
							
								
								
									
										113
									
								
								simulations/05_irr_indep.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										113
									
								
								simulations/05_irr_indep.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,113 @@ | ||||
| ### EXAMPLE 2_b: demonstrates how measurement error can lead to a type | ||||
| ### sign error in a covariate This is the same as example 2, only | ||||
| ### instead of x->k we have k->x.  Even when you have a good | ||||
| ### predictor, if it's biased against a covariate you can get the | ||||
| ### wrong sign.  Even when you include the proxy variable in the | ||||
| ### regression.  But with some ground truth and multiple imputation, | ||||
| ### you can fix it. | ||||
| 
 | ||||
| library(argparser) | ||||
| library(mecor) | ||||
| library(ggplot2) | ||||
| library(data.table) | ||||
| library(filelock) | ||||
| library(arrow) | ||||
| library(Amelia) | ||||
| library(Zelig) | ||||
| 
 | ||||
| library(predictionError) | ||||
| options(amelia.parallel="no", amelia.ncpus=1) | ||||
| 
 | ||||
| source("irr_simulation_base.R") | ||||
| 
 | ||||
| ## SETUP: | ||||
| ### we want to estimate x -> y; x is MAR | ||||
| ### we have x -> k; k -> w; x -> w is used to predict x via the model w. | ||||
| ### A realistic scenario is that we have an NLP model predicting something like "racial harassment" in social media comments | ||||
| ### The labels x are binary, but the model provides a continuous predictor | ||||
| 
 | ||||
| ### simulation: | ||||
| #### how much power do we get from the model in the first place? (sweeping N and m) | ||||
| ####  | ||||
| 
 | ||||
| simulate_data <- function(N, m, B0=0, Bxy=0.2, Bzy=-0.2, Bzx=0.2, y_explained_variance=0.025, prediction_accuracy=0.73, coder_accuracy=0.9, seed=1){ | ||||
|     set.seed(seed) | ||||
|     z <- rbinom(N, 1, 0.5) | ||||
|                                         #    x.var.epsilon <- var(Bzx *z) * ((1-zx_explained_variance)/zx_explained_variance) | ||||
|     xprime <- Bzx * z #+ x.var.epsilon | ||||
|     x <- rbinom(N,1,plogis(xprime)) | ||||
| 
 | ||||
|     y.var.epsilon <- (var(Bzy * z) + var(Bxy *x) + 2*cov(Bxy*x,Bzy*z)) * ((1-y_explained_variance)/y_explained_variance) | ||||
|     y.epsilon <- rnorm(N, sd = sqrt(y.var.epsilon)) | ||||
|     y <- Bzy * z + Bxy * x + y.epsilon | ||||
| 
 | ||||
|     df <- data.table(x=x,y=y,z=z) | ||||
| 
 | ||||
|     if(m < N){ | ||||
|         df <- df[sample(nrow(df), m), x.obs := x] | ||||
|     } else { | ||||
|         df <- df[, x.obs := x] | ||||
|     } | ||||
| 
 | ||||
|     df[ (!is.na(x.obs)) ,x.obs.0 := abs(x.obs - rbinom(.N, 1, 1-coder_accuracy))] | ||||
|     df[ (!is.na(x.obs)) ,x.obs.1 := abs(x.obs - rbinom(.N, 1, 1-coder_accuracy))] | ||||
|      | ||||
| 
 | ||||
|     ## how can you make a model with a specific accuracy? | ||||
|     w0 =(1-x)**2 + (-1)**(1-x) * prediction_accuracy | ||||
| 
 | ||||
|     ## how can you make a model with a specific accuracy, with a continuous latent variable. | ||||
|     # now it makes the same amount of mistake to each point, probably | ||||
|     # add mean0 noise to the odds. | ||||
|      | ||||
|     w.noisey.odds = rlogis(N,qlogis(w0)) | ||||
|     df[,w := plogis(w.noisey.odds)] | ||||
|     df[,w_pred:=as.integer(w > 0.5)] | ||||
|     (mean(df$x==df$w_pred)) | ||||
|     return(df) | ||||
| } | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models") | ||||
| parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=57, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_1.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.05) | ||||
| # parser <- add_argument(parser, "--zx_explained_variance", help='what proportion of the variance of x can be explained by z?', default=0.3) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.73) | ||||
| parser <- add_argument(parser, "--coder_accuracy", help='how accurate is the predictive model?', default=0.8) | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~x") | ||||
| 
 | ||||
| # parser <- add_argument(parser, "--rater_formula", help='formula for the true variable', default="x.obs~x") | ||||
| parser <- add_argument(parser, "--truth_formula", help='formula for the true variable', default="x~z") | ||||
| parser <- add_argument(parser, "--Bzx", help='Effect of z on x', default=-0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='Effect of z on y', default=-0.3) | ||||
| parser <- add_argument(parser, "--Bxy", help='Effect of z on y', default=0.3) | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| B0 <- 0 | ||||
| Bxy <- args$Bxy | ||||
| Bzy <- args$Bzy | ||||
| Bzx <- args$Bzx | ||||
| 
 | ||||
| if (args$m < args$N){ | ||||
| 
 | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, Bzx, seed=args$seed + 500, y_explained_variance = args$y_explained_variance,  prediction_accuracy=args$prediction_accuracy, coder_accuracy=args$coder_accuracy) | ||||
| 
 | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy, Bzx=Bzx, 'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'accuracy_imbalance_difference'=args$accuracy_imbalance_difference, 'outcome_formula'=args$outcome_formula, 'truth_formula'=args$truth_formula, 'proxy_formula'=args$proxy_formula,truth_formula=args$truth_formula, 'coder_accuracy'=args$coder_accuracy, error='') | ||||
| 
 | ||||
|     outline <- run_simulation(df, result, outcome_formula=as.formula(args$outcome_formula), proxy_formula=as.formula(args$proxy_formula), truth_formula=as.formula(args$truth_formula)) | ||||
|      | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
|     if(file.exists(args$outfile)){ | ||||
|         logdata <- read_feather(args$outfile) | ||||
|         logdata <- rbind(logdata,as.data.table(outline),fill=TRUE) | ||||
|     } else { | ||||
|         logdata <- as.data.table(outline) | ||||
|     } | ||||
| 
 | ||||
|     print(outline) | ||||
|     write_feather(logdata, args$outfile) | ||||
|     unlock(outfile_lock) | ||||
| } | ||||
							
								
								
									
										99
									
								
								simulations/06_irr_dv.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								simulations/06_irr_dv.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,99 @@ | ||||
| 
 | ||||
| library(argparser) | ||||
| library(mecor) | ||||
| library(ggplot2) | ||||
| library(data.table) | ||||
| library(filelock) | ||||
| library(arrow) | ||||
| library(Amelia) | ||||
| library(Zelig) | ||||
| library(predictionError) | ||||
| options(amelia.parallel="no", | ||||
|         amelia.ncpus=1) | ||||
| setDTthreads(40) | ||||
| 
 | ||||
| source("irr_dv_simulation_base.R") | ||||
| 
 | ||||
| 
 | ||||
| ## one way to do it is by adding correlation to x.obs and y that isn't in w. | ||||
| ## in other words, the model is missing an important feature of x.obs that's related to y. | ||||
| simulate_data <- function(N, m, B0, Bxy, Bzy, seed, prediction_accuracy=0.73, coder_accuracy=0.8){ | ||||
|     set.seed(seed) | ||||
| 
 | ||||
|     # make w and y dependent | ||||
|     z <- rbinom(N, 1, 0.5) | ||||
|     x <- rbinom(N, 1, 0.5) | ||||
| 
 | ||||
|     ystar <- Bzy * z + Bxy * x + B0 | ||||
|     y <- rbinom(N,1,plogis(ystar)) | ||||
| 
 | ||||
|     # glm(y ~ x + z, family="binomial") | ||||
| 
 | ||||
|     df <- data.table(x=x,y=y,ystar=ystar,z=z) | ||||
| 
 | ||||
|     if(m < N){ | ||||
|         df <- df[sample(nrow(df), m), y.obs := y] | ||||
|     } else { | ||||
|         df <- df[, y.obs := y] | ||||
|     } | ||||
|      | ||||
|     df[ (!is.na(y.obs)) ,y.obs.0 := abs(y.obs - rbinom(.N, 1, 1-coder_accuracy))] | ||||
|     df[ (!is.na(y.obs)) ,y.obs.1 := abs(y.obs - rbinom(.N, 1, 1-coder_accuracy))] | ||||
| 
 | ||||
|     odds.y1 <- qlogis(prediction_accuracy) | ||||
|     odds.y0 <- qlogis(prediction_accuracy,lower.tail=F) | ||||
| 
 | ||||
|     df[y==0,w:=plogis(rlogis(.N,odds.y0))] | ||||
|     df[y==1,w:=plogis(rlogis(.N,odds.y1))] | ||||
| 
 | ||||
|     df[,w_pred := as.integer(w > 0.5)] | ||||
| 
 | ||||
|     print(mean(df[x==0]$y == df[x==0]$w_pred)) | ||||
|     print(mean(df[x==1]$y == df[x==1]$w_pred)) | ||||
|     print(mean(df$w_pred == df$y)) | ||||
|     return(df) | ||||
| } | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models") | ||||
| parser <- add_argument(parser, "--N", default=1000, help="number of observations of w") | ||||
| parser <- add_argument(parser, "--m", default=500, help="m the number of ground truth observations") | ||||
| parser <- add_argument(parser, "--seed", default=17, help='seed for the rng') | ||||
| parser <- add_argument(parser, "--outfile", help='output file', default='example_2.feather') | ||||
| parser <- add_argument(parser, "--y_explained_variance", help='what proportion of the variance of y can be explained?', default=0.005) | ||||
| parser <- add_argument(parser, "--prediction_accuracy", help='how accurate is the predictive model?', default=0.72) | ||||
| ## parser <- add_argument(parser, "--x_bias_y1", help='how is the classifier biased when y = 1?', default=-0.75) | ||||
| ## parser <- add_argument(parser, "--x_bias_y0", help='how is the classifier biased when y = 0 ?', default=0.75) | ||||
| parser <- add_argument(parser, "--Bxy", help='coefficient of x on y', default=0.3) | ||||
| parser <- add_argument(parser, "--Bzy", help='coeffficient of z on y', default=-0.3) | ||||
| parser <- add_argument(parser, "--outcome_formula", help='formula for the outcome variable', default="y~x+z") | ||||
| parser <- add_argument(parser, "--proxy_formula", help='formula for the proxy variable', default="w_pred~y") | ||||
| parser <- add_argument(parser, "--coder_accuracy", help='How accurate are the coders?', default=0.8) | ||||
| 
 | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| B0 <- 0 | ||||
| Bxy <- args$Bxy | ||||
| Bzy <- args$Bzy | ||||
| 
 | ||||
| 
 | ||||
| if(args$m < args$N){ | ||||
|     df <- simulate_data(args$N, args$m, B0, Bxy, Bzy, args$seed, args$prediction_accuracy, args$coder_accuracy) | ||||
| 
 | ||||
| #    result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'x_bias_y0'=args$x_bias_y0,'x_bias_y1'=args$x_bias_y1,'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
|     result <- list('N'=args$N,'m'=args$m,'B0'=B0,'Bxy'=Bxy,'Bzy'=Bzy, 'seed'=args$seed, 'y_explained_variance'=args$y_explained_variance, 'prediction_accuracy'=args$prediction_accuracy, 'outcome_formula' = args$outcome_formula, 'proxy_formula' = args$proxy_formula) | ||||
| 
 | ||||
|     outline <- run_simulation_depvar(df, result, outcome_formula = as.formula(args$outcome_formula), proxy_formula = as.formula(args$proxy_formula)) | ||||
| 
 | ||||
|     outfile_lock <- lock(paste0(args$outfile, '_lock'),exclusive=TRUE) | ||||
| 
 | ||||
|     if(file.exists(args$outfile)){ | ||||
|         logdata <- read_feather(args$outfile) | ||||
|         logdata <- rbind(logdata,as.data.table(outline),fill=TRUE) | ||||
|     } else { | ||||
|         logdata <- as.data.table(outline) | ||||
|     } | ||||
| 
 | ||||
|     print(outline) | ||||
|     write_feather(logdata, args$outfile) | ||||
|     unlock(outfile_lock) | ||||
| } | ||||
| @ -1,12 +1,12 @@ | ||||
| 
 | ||||
| SHELL=bash | ||||
| 
 | ||||
| Ns=[1000, 2000, 4000, 8000] | ||||
| ms=[100, 200, 400, 800] | ||||
| seeds=[$(shell seq -s, 1 100)] | ||||
| Ns=[1000, 2000, 4000] | ||||
| ms=[200, 400, 800] | ||||
| seeds=[$(shell seq -s, 1 250)] | ||||
| explained_variances=[0.1] | ||||
| 
 | ||||
| all:remembr.RDS | ||||
| all:remembr.RDS remember_irr.RDS | ||||
| 
 | ||||
| srun=srun -A comdata -p compute-bigmem --time=6:00:00 --mem 4G -c 1 | ||||
| 
 | ||||
| @ -31,7 +31,7 @@ example_1.feather: example_1_jobs | ||||
| #	sbatch --wait --verbose --array=3001-6001 run_simulation.sbatch 0 example_1_jobs
 | ||||
| 
 | ||||
| example_2_jobs: 02_indep_differential.R simulation_base.R | ||||
| 	grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y*z*x"], "truth_formula":["x~z"]}' --outfile example_2_jobs | ||||
| 	grid_sweep.py --command "Rscript 02_indep_differential.R" --arg_dict '{"N":${Ns},"m":${ms}, "seed":${seeds}, "outfile":["example_2.feather"],"y_explained_variance":${explained_variances},  "Bzy":[-0.3],"Bxy":[0.3],"Bzx":[0.3], "outcome_formula":["y~x+z"], "proxy_formula":["w_pred~y*z*x"]}' --outfile example_2_jobs | ||||
| 
 | ||||
| example_2.feather: example_2_jobs  | ||||
| 	rm -f example_2.feather | ||||
| @ -59,6 +59,7 @@ example_4.feather: example_4_jobs | ||||
| 	rm -f example_4.feather	 | ||||
| 	sbatch --wait --verbose --array=1-$(shell cat example_4_jobs | wc -l)  run_simulation.sbatch 0 example_4_jobs | ||||
| 
 | ||||
| 
 | ||||
| remembr.RDS:example_1.feather example_2.feather example_3.feather example_4.feather plot_example.R plot_dv_example.R | ||||
| 	rm -f remembr.RDS | ||||
| 	${srun} Rscript plot_example.R --infile example_1.feather --name "plot.df.example.1" | ||||
| @ -66,6 +67,32 @@ remembr.RDS:example_1.feather example_2.feather example_3.feather example_4.feat | ||||
| 	${srun} Rscript plot_dv_example.R --infile example_3.feather --name "plot.df.example.3" | ||||
| 	${srun} Rscript plot_dv_example.R --infile example_4.feather --name "plot.df.example.4" | ||||
| 
 | ||||
| 
 | ||||
| irr_Ns = ${Ns} | ||||
| irr_ms = ${ms} | ||||
| irr_seeds=${seeds} | ||||
| irr_explained_variances=${explained_variances} | ||||
| 
 | ||||
| example_5_jobs: 05_irr_indep.R irr_simulation_base.R | ||||
| 	grid_sweep.py --command "Rscript 05_irr_indep.R" --arg_dict '{"N":${irr_Ns},"m":${irr_ms}, "seed":${irr_seeds}, "outfile":["example_5.feather"], "y_explained_variance":${irr_explained_variances}}' --outfile example_5_jobs | ||||
| 
 | ||||
| example_5.feather:example_5_jobs | ||||
| 	rm -f example_5.feather | ||||
| 	sbatch --wait --verbose --array=1-$(shell cat example_5_jobs | wc -l)  run_simulation.sbatch 0 example_5_jobs | ||||
| 
 | ||||
| 
 | ||||
| example_6_jobs: 06_irr_dv.R irr_dv_simulation_base.R | ||||
| 	grid_sweep.py --command "Rscript 06_irr_dv.R" --arg_dict '{"N":${irr_Ns},"m":${irr_ms}, "seed":${irr_seeds}, "outfile":["example_6.feather"], "y_explained_variance":${irr_explained_variances}}' --outfile example_6_jobs | ||||
| 
 | ||||
| example_6.feather:example_6_jobs | ||||
| 	rm -f example_6.feather | ||||
| 	sbatch --wait --verbose --array=1-$(shell cat example_6_jobs | wc -l)  run_simulation.sbatch 0 example_6_jobs | ||||
| 
 | ||||
| remember_irr.RDS: example_5.feather example_6.feather plot_irr_example.R plot_irr_dv_example.R | ||||
| 	rm -f remember_irr.RDS | ||||
| 	${srun} Rscript plot_irr_example.R --infile example_5.feather --name "plot.df.example.5" | ||||
| 	${srun} Rscript plot_irr_dv_example.R --infile example_6.feather --name "plot.df.example.6" | ||||
| 
 | ||||
| clean: | ||||
| 	rm *.feather | ||||
| 	rm -f remembr.RDS | ||||
|  | ||||
							
								
								
									
										107
									
								
								simulations/irr_dv_simulation_base.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								simulations/irr_dv_simulation_base.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,107 @@ | ||||
| library(matrixStats) # for numerically stable logsumexps | ||||
| 
 | ||||
| options(amelia.parallel="no", | ||||
|         amelia.ncpus=1) | ||||
| library(Amelia) | ||||
| 
 | ||||
| source("measerr_methods.R") ## for my more generic function. | ||||
| 
 | ||||
| run_simulation_depvar <- function(df, result, outcome_formula = y ~ x + z, rater_formula = y.obs ~ x, proxy_formula = w_pred ~ y){ | ||||
| 
 | ||||
|     accuracy <- df[,mean(w_pred==y)] | ||||
|     result <- append(result, list(accuracy=accuracy)) | ||||
| 
 | ||||
|     (model.true <- glm(y ~ x + z, data=df, family=binomial(link='logit'))) | ||||
|     true.ci.Bxy <- confint(model.true)['x',] | ||||
|     true.ci.Bzy <- confint(model.true)['z',] | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.true=coef(model.true)['x'], | ||||
|                                   Bzy.est.true=coef(model.true)['z'], | ||||
|                                   Bxy.ci.upper.true = true.ci.Bxy[2], | ||||
|                                   Bxy.ci.lower.true = true.ci.Bxy[1], | ||||
|                                   Bzy.ci.upper.true = true.ci.Bzy[2], | ||||
|                                   Bzy.ci.lower.true = true.ci.Bzy[1])) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|     loa0.feasible <- glm(y.obs.0 ~ x + z, data = df[!(is.na(y.obs.0))], family=binomial(link='logit')) | ||||
| 
 | ||||
|     loa0.ci.Bxy <- confint(loa0.feasible)['x',] | ||||
|     loa0.ci.Bzy <- confint(loa0.feasible)['z',] | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.loa0.feasible=coef(loa0.feasible)['x'], | ||||
|                                   Bzy.est.loa0.feasible=coef(loa0.feasible)['z'], | ||||
|                                   Bxy.ci.upper.loa0.feasible = loa0.ci.Bxy[2], | ||||
|                                   Bxy.ci.lower.loa0.feasible = loa0.ci.Bxy[1], | ||||
|                                   Bzy.ci.upper.loa0.feasible = loa0.ci.Bzy[2], | ||||
|                                   Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1])) | ||||
| 
 | ||||
| 
 | ||||
|     df.loa0.mle <- copy(df) | ||||
|     df.loa0.mle[,y:=y.obs.0] | ||||
|     loa0.mle <- measerr_mle_dv(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula) | ||||
|     fisher.info <- solve(loa0.mle$hessian) | ||||
|     coef <- loa0.mle$par | ||||
|     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 | ||||
|     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.loa0.mle=coef['x'], | ||||
|                                   Bzy.est.loa0.mle=coef['z'], | ||||
|                                   Bxy.ci.upper.loa0.mle = ci.upper['x'], | ||||
|                                   Bxy.ci.lower.loa0.mle = ci.lower['x'], | ||||
|                                   Bzy.ci.upper.loa0.mle = ci.upper['z'], | ||||
|                                   Bzy.ci.lower.loa0.mle = ci.upper['z'])) | ||||
| 
 | ||||
|     loco.feasible <- glm(y.obs.0 ~ x + z, data = df[(!is.na(y.obs.0)) & (y.obs.1 == y.obs.0)], family=binomial(link='logit')) | ||||
| 
 | ||||
|     loco.feasible.ci.Bxy <- confint(loco.feasible)['x',] | ||||
|     loco.feasible.ci.Bzy <- confint(loco.feasible)['z',] | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.loco.feasible=coef(loco.feasible)['x'], | ||||
|                                   Bzy.est.loco.feasible=coef(loco.feasible)['z'], | ||||
|                                   Bxy.ci.upper.loco.feasible = loco.feasible.ci.Bxy[2], | ||||
|                                   Bxy.ci.lower.loco.feasible = loco.feasible.ci.Bxy[1], | ||||
|                                   Bzy.ci.upper.loco.feasible = loco.feasible.ci.Bzy[2], | ||||
|                                   Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1])) | ||||
| 
 | ||||
| 
 | ||||
|     df.loco.mle <- copy(df) | ||||
|     df.loco.mle[,y.obs:=NA] | ||||
|     df.loco.mle[(y.obs.0)==(y.obs.1),y.obs:=y.obs.0] | ||||
|     df.loco.mle[,y.true:=y] | ||||
|     df.loco.mle[,y:=y.obs] | ||||
|     print(df.loco.mle[!is.na(y.obs.1),mean(y.true==y,na.rm=TRUE)]) | ||||
|     loco.mle <- measerr_mle_dv(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula) | ||||
|     fisher.info <- solve(loco.mle$hessian) | ||||
|     coef <- loco.mle$par | ||||
|     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 | ||||
|     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.loco.mle=coef['x'], | ||||
|                                   Bzy.est.loco.mle=coef['z'], | ||||
|                                   Bxy.ci.upper.loco.mle = ci.upper['x'], | ||||
|                                   Bxy.ci.lower.loco.mle = ci.lower['x'], | ||||
|                                   Bzy.ci.upper.loco.mle = ci.upper['z'], | ||||
|                                   Bzy.ci.lower.loco.mle = ci.upper['z'])) | ||||
| 
 | ||||
|     print(rater_formula) | ||||
|     print(proxy_formula) | ||||
| 
 | ||||
|     ## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula) | ||||
| 
 | ||||
|     ## fisher.info <- solve(mle.irr$hessian) | ||||
|     ## coef <- mle.irr$par | ||||
|     ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 | ||||
|     ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 | ||||
|      | ||||
|     ## result <- append(result, | ||||
|     ##                  list(Bxy.est.mle = coef['x'], | ||||
|     ##                       Bxy.ci.upper.mle = ci.upper['x'], | ||||
|     ##                       Bxy.ci.lower.mle = ci.lower['x'], | ||||
|     ##                       Bzy.est.mle = coef['z'], | ||||
|     ##                       Bzy.ci.upper.mle = ci.upper['z'], | ||||
|     ##                       Bzy.ci.lower.mle = ci.lower['z'])) | ||||
| 
 | ||||
|     return(result) | ||||
| 
 | ||||
| } | ||||
							
								
								
									
										106
									
								
								simulations/irr_simulation_base.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										106
									
								
								simulations/irr_simulation_base.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,106 @@ | ||||
| library(matrixStats) # for numerically stable logsumexps | ||||
| 
 | ||||
| options(amelia.parallel="no", | ||||
|         amelia.ncpus=1) | ||||
| library(Amelia) | ||||
| 
 | ||||
| source("measerr_methods.R") ## for my more generic function. | ||||
| 
 | ||||
| run_simulation <- function(df, result, outcome_formula = y ~ x + z, proxy_formula = w_pred ~ x, truth_formula = x ~ z){ | ||||
| 
 | ||||
|     accuracy <- df[,mean(w_pred==x)] | ||||
|     result <- append(result, list(accuracy=accuracy)) | ||||
| 
 | ||||
|     (model.true <- lm(y ~ x + z, data=df)) | ||||
|     true.ci.Bxy <- confint(model.true)['x',] | ||||
|     true.ci.Bzy <- confint(model.true)['z',] | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.true=coef(model.true)['x'], | ||||
|                                   Bzy.est.true=coef(model.true)['z'], | ||||
|                                   Bxy.ci.upper.true = true.ci.Bxy[2], | ||||
|                                   Bxy.ci.lower.true = true.ci.Bxy[1], | ||||
|                                   Bzy.ci.upper.true = true.ci.Bzy[2], | ||||
|                                   Bzy.ci.lower.true = true.ci.Bzy[1])) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|     loa0.feasible <- lm(y ~ x.obs.0 + z, data = df[!(is.na(x.obs.1))]) | ||||
| 
 | ||||
|     loa0.ci.Bxy <- confint(loa0.feasible)['x.obs.0',] | ||||
|     loa0.ci.Bzy <- confint(loa0.feasible)['z',] | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.loa0.feasible=coef(loa0.feasible)['x.obs.0'], | ||||
|                                   Bzy.est.loa0.feasible=coef(loa0.feasible)['z'], | ||||
|                                   Bxy.ci.upper.loa0.feasible = loa0.ci.Bxy[2], | ||||
|                                   Bxy.ci.lower.loa0.feasible = loa0.ci.Bxy[1], | ||||
|                                   Bzy.ci.upper.loa0.feasible = loa0.ci.Bzy[2], | ||||
|                                   Bzy.ci.lower.loa0.feasible = loa0.ci.Bzy[1])) | ||||
| 
 | ||||
| 
 | ||||
|     df.loa0.mle <- copy(df) | ||||
|     df.loa0.mle[,x:=x.obs.0] | ||||
|     loa0.mle <- measerr_mle(df.loa0.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula) | ||||
|     fisher.info <- solve(loa0.mle$hessian) | ||||
|     coef <- loa0.mle$par | ||||
|     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 | ||||
|     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.loa0.mle=coef['x'], | ||||
|                                   Bzy.est.loa0.mle=coef['z'], | ||||
|                                   Bxy.ci.upper.loa0.mle = ci.upper['x'], | ||||
|                                   Bxy.ci.lower.loa0.mle = ci.lower['x'], | ||||
|                                   Bzy.ci.upper.loa0.mle = ci.upper['z'], | ||||
|                                   Bzy.ci.lower.loa0.mle = ci.upper['z'])) | ||||
| 
 | ||||
|     loco.feasible <- lm(y ~ x.obs.1 + z, data = df[(!is.na(x.obs.1)) & (x.obs.1 == x.obs.0)]) | ||||
| 
 | ||||
|     loco.feasible.ci.Bxy <- confint(loco.feasible)['x.obs.1',] | ||||
|     loco.feasible.ci.Bzy <- confint(loco.feasible)['z',] | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.loco.feasible=coef(loco.feasible)['x.obs.1'], | ||||
|                                   Bzy.est.loco.feasible=coef(loco.feasible)['z'], | ||||
|                                   Bxy.ci.upper.loco.feasible = loco.feasible.ci.Bxy[2], | ||||
|                                   Bxy.ci.lower.loco.feasible = loco.feasible.ci.Bxy[1], | ||||
|                                   Bzy.ci.upper.loco.feasible = loco.feasible.ci.Bzy[2], | ||||
|                                   Bzy.ci.lower.loco.feasible = loco.feasible.ci.Bzy[1])) | ||||
| 
 | ||||
| 
 | ||||
|     df.loco.mle <- copy(df) | ||||
|     df.loco.mle[,x.obs:=NA] | ||||
|     df.loco.mle[(x.obs.0)==(x.obs.1),x.obs:=x.obs.0] | ||||
|     df.loco.mle[,x.true:=x] | ||||
|     df.loco.mle[,x:=x.obs] | ||||
|     print(df.loco.mle[!is.na(x.obs.1),mean(x.true==x,na.rm=TRUE)]) | ||||
|     loco.mle <- measerr_mle(df.loco.mle, outcome_formula=outcome_formula, proxy_formula=proxy_formula, truth_formula=truth_formula) | ||||
|     fisher.info <- solve(loco.mle$hessian) | ||||
|     coef <- loco.mle$par | ||||
|     ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 | ||||
|     ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 | ||||
| 
 | ||||
|     result <- append(result, list(Bxy.est.loco.mle=coef['x'], | ||||
|                                   Bzy.est.loco.mle=coef['z'], | ||||
|                                   Bxy.ci.upper.loco.mle = ci.upper['x'], | ||||
|                                   Bxy.ci.lower.loco.mle = ci.lower['x'], | ||||
|                                   Bzy.ci.upper.loco.mle = ci.upper['z'], | ||||
|                                   Bzy.ci.lower.loco.mle = ci.upper['z'])) | ||||
| 
 | ||||
|     ## print(rater_formula) | ||||
|     ## print(proxy_formula) | ||||
|     ## mle.irr <- measerr_irr_mle( df, outcome_formula = outcome_formula, rater_formula = rater_formula, proxy_formula=proxy_formula, truth_formula=truth_formula) | ||||
| 
 | ||||
|     ## fisher.info <- solve(mle.irr$hessian) | ||||
|     ## coef <- mle.irr$par | ||||
|     ## ci.upper <- coef + sqrt(diag(fisher.info)) * 1.96 | ||||
|     ## ci.lower <- coef - sqrt(diag(fisher.info)) * 1.96 | ||||
|      | ||||
|     ## result <- append(result, | ||||
|     ##                  list(Bxy.est.mle = coef['x'], | ||||
|     ##                       Bxy.ci.upper.mle = ci.upper['x'], | ||||
|     ##                       Bxy.ci.lower.mle = ci.lower['x'], | ||||
|     ##                       Bzy.est.mle = coef['z'], | ||||
|     ##                       Bzy.ci.upper.mle = ci.upper['z'], | ||||
|     ##                       Bzy.ci.lower.mle = ci.lower['z'])) | ||||
| 
 | ||||
|     return(result) | ||||
| 
 | ||||
| } | ||||
| @ -102,17 +102,211 @@ measerr_mle_dv <- function(df, outcome_formula, outcome_family=binomial(link='lo | ||||
|     return(fit) | ||||
| } | ||||
| 
 | ||||
| ## Experimental, and not necessary if errors are independent. | ||||
| measerr_irr_mle <- function(df, outcome_formula, outcome_family=gaussian(), rater_formula, proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit')){ | ||||
| 
 | ||||
|     ### in this scenario, the ground truth also has measurement error, but we have repeated measures for it.  | ||||
| 
 | ||||
|     ## probability of y given observed data. | ||||
|     df.obs <- df[!is.na(x.obs.1)] | ||||
|     proxy.variable <- all.vars(proxy_formula)[1] | ||||
|     df.x.obs.1 <- copy(df.obs)[,x:=1] | ||||
|     df.x.obs.0 <- copy(df.obs)[,x:=0] | ||||
|     y.obs <- df.obs[,y] | ||||
| 
 | ||||
|     nll <- function(params){ | ||||
|         outcome.model.matrix.x.obs.0 <- model.matrix(outcome_formula, df.x.obs.0) | ||||
|         outcome.model.matrix.x.obs.1 <- model.matrix(outcome_formula, df.x.obs.1) | ||||
| 
 | ||||
|         param.idx <- 1 | ||||
|         n.outcome.model.covars <- dim(outcome.model.matrix.x.obs.0)[2] | ||||
|         outcome.params <- params[param.idx:n.outcome.model.covars] | ||||
|         param.idx <- param.idx + n.outcome.model.covars | ||||
| 
 | ||||
|         sigma.y <- params[param.idx] | ||||
|         param.idx <- param.idx + 1 | ||||
| 
 | ||||
|         ll.y.x.obs.0 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.0),sd=sigma.y, log=TRUE) | ||||
|         ll.y.x.obs.1 <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix.x.obs.1),sd=sigma.y, log=TRUE) | ||||
| 
 | ||||
|         ## assume that the two coders are statistically independent conditional on x | ||||
|         ll.x.obs.0.x0 <- vector(mode='numeric', length=nrow(df.obs)) | ||||
|         ll.x.obs.1.x0 <- vector(mode='numeric', length=nrow(df.obs)) | ||||
|         ll.x.obs.0.x1 <- vector(mode='numeric', length=nrow(df.obs)) | ||||
|         ll.x.obs.1.x1 <- vector(mode='numeric', length=nrow(df.obs)) | ||||
| 
 | ||||
|         rater.model.matrix.x.obs.0 <- model.matrix(rater_formula, df.x.obs.0) | ||||
|         rater.model.matrix.x.obs.1 <- model.matrix(rater_formula, df.x.obs.1) | ||||
| 
 | ||||
|         n.rater.model.covars <- dim(rater.model.matrix.x.obs.0)[2] | ||||
|         rater.0.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)] | ||||
|         param.idx <- param.idx + n.rater.model.covars | ||||
| 
 | ||||
|         rater.1.params <- params[param.idx:(n.rater.model.covars + param.idx - 1)] | ||||
|         param.idx <- param.idx + n.rater.model.covars | ||||
|          | ||||
|         # probability of rater 0 if x is 0 or 1 | ||||
|         ll.x.obs.0.x0[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==1,]), log=TRUE) | ||||
|         ll.x.obs.0.x0[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE) | ||||
|         ll.x.obs.0.x1[df.obs$x.obs.0==1] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==1,]), log=TRUE) | ||||
|         ll.x.obs.0.x1[df.obs$x.obs.0==0] <- plogis(rater.0.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.0==0,]), log=TRUE, lower.tail=FALSE) | ||||
| 
 | ||||
|         # probability of rater 1 if x is 0 or 1 | ||||
|         ll.x.obs.1.x0[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==1,]), log=TRUE) | ||||
|         ll.x.obs.1.x0[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.0[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE) | ||||
|         ll.x.obs.1.x1[df.obs$x.obs.1==1] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==1,]), log=TRUE) | ||||
|         ll.x.obs.1.x1[df.obs$x.obs.1==0] <- plogis(rater.1.params %*% t(rater.model.matrix.x.obs.1[df.obs$x.obs.1==0,]), log=TRUE, lower.tail=FALSE) | ||||
| 
 | ||||
|         proxy.model.matrix.x0 <- model.matrix(proxy_formula, df.x.obs.0) | ||||
|         proxy.model.matrix.x1 <- model.matrix(proxy_formula, df.x.obs.1) | ||||
| 
 | ||||
|         n.proxy.model.covars <- dim(proxy.model.matrix.x0)[2] | ||||
|         proxy.params <- params[param.idx:(n.proxy.model.covars+param.idx-1)] | ||||
|         param.idx <- param.idx + n.proxy.model.covars | ||||
| 
 | ||||
|         proxy.obs <- with(df.obs, eval(parse(text=proxy.variable))) | ||||
| 
 | ||||
|         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ | ||||
|             ll.w.obs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1]) | ||||
|             ll.w.obs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1]) | ||||
| 
 | ||||
|                                         # proxy_formula likelihood using logistic regression | ||||
|             ll.w.obs.x0[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==1,]),log=TRUE) | ||||
|             ll.w.obs.x0[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) | ||||
| 
 | ||||
|             ll.w.obs.x1[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==1,]),log=TRUE) | ||||
|             ll.w.obs.x1[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) | ||||
|         } | ||||
| 
 | ||||
|         ## assume that the probability of x is a logistic regression depending on z | ||||
|         truth.model.matrix.obs <- model.matrix(truth_formula, df.obs) | ||||
|         n.truth.params <- dim(truth.model.matrix.obs)[2] | ||||
|         truth.params <- params[param.idx:(n.truth.params + param.idx - 1)] | ||||
| 
 | ||||
|         ll.obs.x0 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE) | ||||
|         ll.obs.x1 <- plogis(truth.params %*% t(truth.model.matrix.obs), log=TRUE, lower.tail=FALSE) | ||||
| 
 | ||||
|         ll.obs <- colLogSumExps(rbind(ll.y.x.obs.0 + ll.x.obs.0.x0 + ll.x.obs.1.x0 + ll.obs.x0 + ll.w.obs.x0, | ||||
|                                       ll.y.x.obs.1 + ll.x.obs.0.x1 + ll.x.obs.1.x1 + ll.obs.x1 + ll.w.obs.x1)) | ||||
| 
 | ||||
|         ### NOW FOR THE FUN PART. Likelihood of the unobserved data. | ||||
|         ### we have to integrate out x.obs.0, x.obs.1, and x. | ||||
| 
 | ||||
| 
 | ||||
|         ## THE OUTCOME | ||||
|         df.unobs <- df[is.na(x.obs)] | ||||
|         df.x.unobs.0 <- copy(df.unobs)[,x:=0] | ||||
|         df.x.unobs.1 <- copy(df.unobs)[,x:=1] | ||||
|         y.unobs <- df.unobs$y | ||||
| 
 | ||||
|         outcome.model.matrix.x.unobs.0 <- model.matrix(outcome_formula, df.x.unobs.0) | ||||
|         outcome.model.matrix.x.unobs.1 <- model.matrix(outcome_formula, df.x.unobs.1) | ||||
| 
 | ||||
|         ll.y.unobs.x0 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.0), sd=sigma.y, log=TRUE) | ||||
|         ll.y.unobs.x1 <- dnorm(y.unobs, outcome.params %*% t(outcome.model.matrix.x.unobs.1), sd=sigma.y, log=TRUE) | ||||
| 
 | ||||
|          | ||||
|         ## THE UNLABELED DATA | ||||
| 
 | ||||
|          | ||||
|         ## assume that the two coders are statistically independent conditional on x | ||||
|         ll.x.unobs.0.x0 <- vector(mode='numeric', length=nrow(df.unobs)) | ||||
|         ll.x.unobs.1.x0 <- vector(mode='numeric', length=nrow(df.unobs)) | ||||
|         ll.x.unobs.0.x1 <- vector(mode='numeric', length=nrow(df.unobs)) | ||||
|         ll.x.unobs.1.x1 <- vector(mode='numeric', length=nrow(df.unobs)) | ||||
|          | ||||
|         df.x.unobs.0[,x.obs := 1] | ||||
|         df.x.unobs.1[,x.obs := 1] | ||||
| 
 | ||||
|         rater.model.matrix.x.unobs.0 <- model.matrix(rater_formula, df.x.unobs.0) | ||||
|         rater.model.matrix.x.unobs.1 <- model.matrix(rater_formula, df.x.unobs.1) | ||||
| 
 | ||||
|           | ||||
|         ## # probability of rater 0 if x is 0 or 1 | ||||
|         ## ll.x.unobs.0.x0 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE), | ||||
|         ##                                      plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE))) | ||||
| 
 | ||||
|         ## ll.x.unobs.0.x1 <- colLogSumExps(rbind(plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE), | ||||
|         ##                                        plogis(rater.0.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE))) | ||||
| 
 | ||||
|         ## # probability of rater 1 if x is 0 or 1 | ||||
|         ## ll.x.unobs.1.x0 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE), | ||||
|         ##                                      plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.0), log=TRUE, lower.tail=TRUE))) | ||||
| 
 | ||||
|         ## ll.x.unobs.1.x1 <- colLogSumExps(rbind(plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE), | ||||
|         ##                                      plogis(rater.1.params %*% t(rater.model.matrix.x.unobs.1), log=TRUE, lower.tail=TRUE))) | ||||
| 
 | ||||
| 
 | ||||
|         proxy.unobs <- with(df.unobs, eval(parse(text=proxy.variable))) | ||||
|         proxy.model.matrix.x0.unobs <- model.matrix(proxy_formula, df.x.unobs.0) | ||||
|         proxy.model.matrix.x1.unobs <- model.matrix(proxy_formula, df.x.unobs.1) | ||||
| 
 | ||||
|         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ | ||||
|             ll.w.unobs.x0 <- vector(mode='numeric',length=dim(proxy.model.matrix.x0)[1]) | ||||
|             ll.w.unobs.x1 <- vector(mode='numeric',length=dim(proxy.model.matrix.x1)[1]) | ||||
| 
 | ||||
| 
 | ||||
|                                         # proxy_formula likelihood using logistic regression | ||||
|             ll.w.unobs.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==1,]),log=TRUE) | ||||
|             ll.w.unobs.x0[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x0.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE) | ||||
| 
 | ||||
|             ll.w.unobs.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==1,]),log=TRUE) | ||||
|             ll.w.unobs.x1[proxy.unobs==0] <- plogis(proxy.params %*% t(proxy.model.matrix.x1.unobs[proxy.unobs==0,]),log=TRUE, lower.tail=FALSE) | ||||
|         } | ||||
| 
 | ||||
|         truth.model.matrix.unobs <- model.matrix(truth_formula, df.unobs) | ||||
| 
 | ||||
|         ll.unobs.x0 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE) | ||||
|         ll.unobs.x1 <- plogis(truth.params %*% t(truth.model.matrix.unobs), log=TRUE, lower.tail=FALSE) | ||||
| 
 | ||||
|         ll.unobs <- colLogSumExps(rbind(ll.unobs.x0 + ll.w.unobs.x0 + ll.y.unobs.x0, | ||||
|                                         ll.unobs.x1 + ll.w.unobs.x1 + ll.y.unobs.x1)) | ||||
| 
 | ||||
|         return(-1 *( sum(ll.obs) + sum(ll.unobs))) | ||||
|     } | ||||
| 
 | ||||
|     outcome.params <- colnames(model.matrix(outcome_formula,df)) | ||||
|     lower <- rep(-Inf, length(outcome.params)) | ||||
| 
 | ||||
|     if(outcome_family$family=='gaussian'){ | ||||
|         params <- c(outcome.params, 'sigma_y') | ||||
|         lower <- c(lower, 0.00001) | ||||
|     } else { | ||||
|         params <- outcome.params | ||||
|     } | ||||
|      | ||||
|     rater.0.params <- colnames(model.matrix(rater_formula,df)) | ||||
|     params <- c(params, paste0('rater_0',rater.0.params)) | ||||
|     lower <- c(lower, rep(-Inf, length(rater.0.params))) | ||||
| 
 | ||||
|     rater.1.params <- colnames(model.matrix(rater_formula,df)) | ||||
|     params <- c(params, paste0('rater_1',rater.1.params)) | ||||
|     lower <- c(lower, rep(-Inf, length(rater.1.params))) | ||||
| 
 | ||||
|     proxy.params <- colnames(model.matrix(proxy_formula, df)) | ||||
|     params <- c(params, paste0('proxy_',proxy.params)) | ||||
|     lower <- c(lower, rep(-Inf, length(proxy.params))) | ||||
| 
 | ||||
|     truth.params <- colnames(model.matrix(truth_formula, df)) | ||||
|     params <- c(params, paste0('truth_', truth.params)) | ||||
|     lower <- c(lower, rep(-Inf, length(truth.params))) | ||||
|     start <- rep(0.1,length(params)) | ||||
|     names(start) <- params | ||||
|      | ||||
|     fit <- optim(start, fn = nll, lower=lower, method='L-BFGS-B', hessian=TRUE, control=list(maxit=1e6)) | ||||
|     return(fit) | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_formula, proxy_family=binomial(link='logit'), truth_formula, truth_family=binomial(link='logit')){ | ||||
| 
 | ||||
|     measrr_mle_nll <- function(params){ | ||||
|         df.obs <- model.frame(outcome_formula, df) | ||||
|          | ||||
|         proxy.variable <- all.vars(proxy_formula)[1] | ||||
|         proxy.model.matrix <- model.matrix(proxy_formula, df) | ||||
| 
 | ||||
|         response.var <- all.vars(outcome_formula)[1] | ||||
|         y.obs <- with(df.obs,eval(parse(text=response.var))) | ||||
|          | ||||
| 
 | ||||
|         outcome.model.matrix <- model.matrix(outcome_formula, df) | ||||
| 
 | ||||
|         param.idx <- 1 | ||||
| @ -125,7 +319,7 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
|             sigma.y <- params[param.idx] | ||||
|             param.idx <- param.idx + 1 | ||||
| 
 | ||||
|             #  outcome_formula likelihood using linear regression | ||||
|                                         #  outcome_formula likelihood using linear regression | ||||
|             ll.y.obs <- dnorm(y.obs, outcome.params %*% t(outcome.model.matrix),sd=sigma.y, log=TRUE) | ||||
|         } | ||||
|          | ||||
| @ -138,7 +332,7 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
|         if( (proxy_family$family=="binomial") & (proxy_family$link=='logit')){ | ||||
|             ll.w.obs <- vector(mode='numeric',length=dim(proxy.model.matrix)[1]) | ||||
| 
 | ||||
|             # proxy_formula likelihood using logistic regression | ||||
|                                         # proxy_formula likelihood using logistic regression | ||||
|             ll.w.obs[proxy.obs==1] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==1,]),log=TRUE) | ||||
|             ll.w.obs[proxy.obs==0] <- plogis(proxy.params %*% t(proxy.model.matrix[proxy.obs==0,]),log=TRUE, lower.tail=FALSE) | ||||
|         } | ||||
| @ -154,12 +348,12 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
|         if( (truth_family$family=="binomial") & (truth_family$link=='logit')){ | ||||
|             ll.x.obs <- vector(mode='numeric',length=dim(truth.model.matrix)[1]) | ||||
| 
 | ||||
|             # truth_formula likelihood using logistic regression | ||||
|                                         # truth_formula likelihood using logistic regression | ||||
|             ll.x.obs[truth.obs==1] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==1,]),log=TRUE) | ||||
|             ll.x.obs[truth.obs==0] <- plogis(truth.params %*% t(truth.model.matrix[truth.obs==0,]),log=TRUE, lower.tail=FALSE) | ||||
|         } | ||||
|          | ||||
|         # add the three likelihoods | ||||
|                                         # add the three likelihoods | ||||
|         ll.obs <- sum(ll.y.obs + ll.w.obs + ll.x.obs) | ||||
| 
 | ||||
|         ## likelihood for the predicted data | ||||
| @ -177,9 +371,9 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
|             outcome.model.matrix.x1 <- model.matrix(outcome_formula, df.unobs.x1) | ||||
|             if(outcome_family$family=="gaussian"){ | ||||
| 
 | ||||
|                 # likelihood of outcome | ||||
|             ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE) | ||||
|             ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE) | ||||
|                                         # likelihood of outcome | ||||
|                 ll.y.x0 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x0), sd=sigma.y, log=TRUE) | ||||
|                 ll.y.x1 <- dnorm(outcome.unobs, outcome.params %*% t(outcome.model.matrix.x1), sd=sigma.y, log=TRUE) | ||||
|             } | ||||
| 
 | ||||
|             if( (proxy_family$family=='binomial') & (proxy_family$link=='logit')){ | ||||
| @ -190,7 +384,7 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
|                 ll.w.x0 <- vector(mode='numeric', length=dim(df.unobs)[1]) | ||||
|                 ll.w.x1 <- vector(mode='numeric', length=dim(df.unobs)[1]) | ||||
| 
 | ||||
|                 # likelihood of proxy | ||||
|                                         # likelihood of proxy | ||||
|                 ll.w.x0[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x0[proxy.unobs==1,]), log=TRUE) | ||||
|                 ll.w.x1[proxy.unobs==1] <- plogis(proxy.params %*% t(proxy.model.matrix.x1[proxy.unobs==1,]), log=TRUE) | ||||
| 
 | ||||
| @ -200,7 +394,7 @@ measerr_mle <- function(df, outcome_formula, outcome_family=gaussian(), proxy_fo | ||||
| 
 | ||||
|             if(truth_family$link=='logit'){ | ||||
|                 truth.model.matrix <- model.matrix(truth_formula, df.unobs.x0) | ||||
|                 # likelihood of truth | ||||
|                                         # likelihood of truth | ||||
|                 ll.x.x1 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE) | ||||
|                 ll.x.x0 <- plogis(truth.params %*% t(truth.model.matrix), log=TRUE, lower.tail=FALSE) | ||||
|             } | ||||
|  | ||||
| @ -10,8 +10,6 @@ parser <- add_argument(parser, "--infile", default="", help="name of the file to | ||||
| parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.") | ||||
| args <- parse_args(parser) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| summarize.estimator <- function(df, suffix='naive', coefname='x'){ | ||||
| 
 | ||||
|     part <- df[,c('N', | ||||
|  | ||||
							
								
								
									
										63
									
								
								simulations/plot_irr_dv_example.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										63
									
								
								simulations/plot_irr_dv_example.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,63 @@ | ||||
| source("RemembR/R/RemembeR.R") | ||||
| library(arrow) | ||||
| library(data.table) | ||||
| library(ggplot2) | ||||
| library(filelock) | ||||
| library(argparser) | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models.") | ||||
| parser <- add_argument(parser, "--infile", default="", help="name of the file to read.") | ||||
| parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.") | ||||
| args <- parse_args(parser) | ||||
| source("summarize_estimator.R") | ||||
| 
 | ||||
| build_plot_dataset <- function(df){ | ||||
|      | ||||
|     x.true <-  summarize.estimator(df, 'true','x') | ||||
| 
 | ||||
|     z.true <-  summarize.estimator(df, 'true','z') | ||||
| 
 | ||||
|     x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x') | ||||
|      | ||||
|     z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z') | ||||
| 
 | ||||
|     x.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'x') | ||||
| 
 | ||||
|     z.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'z') | ||||
| 
 | ||||
|     x.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'x') | ||||
| 
 | ||||
|     z.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'z') | ||||
| 
 | ||||
|     x.loco.mle <- summarize.estimator(df, 'loco.mle', 'x') | ||||
| 
 | ||||
|     z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z') | ||||
| 
 | ||||
| 
 | ||||
|     accuracy <- df[,mean(accuracy)] | ||||
|     plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, z.loco.mle, x.loco.mle),use.names=T) | ||||
|     plot.df[,accuracy := accuracy] | ||||
|     plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)] | ||||
|     return(plot.df) | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| plot.df <- read_feather(args$infile) | ||||
| print(unique(plot.df$N)) | ||||
| 
 | ||||
| # df <- df[apply(df,1,function(x) !any(is.na(x)))] | ||||
| 
 | ||||
| if(!('Bzx' %in% names(plot.df))) | ||||
|     plot.df[,Bzx:=NA] | ||||
| 
 | ||||
| if(!('accuracy_imbalance_difference' %in% names(plot.df))) | ||||
|     plot.df[,accuracy_imbalance_difference:=NA] | ||||
| 
 | ||||
| unique(plot.df[,'accuracy_imbalance_difference']) | ||||
| 
 | ||||
| #plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700]) | ||||
| plot.df <- build_plot_dataset(plot.df) | ||||
| 
 | ||||
| change.remember.file("remember_irr.RDS",clear=TRUE) | ||||
| 
 | ||||
| remember(plot.df,args$name) | ||||
							
								
								
									
										129
									
								
								simulations/plot_irr_example.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										129
									
								
								simulations/plot_irr_example.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,129 @@ | ||||
| source("RemembR/R/RemembeR.R") | ||||
| library(arrow) | ||||
| library(data.table) | ||||
| library(ggplot2) | ||||
| library(filelock) | ||||
| library(argparser) | ||||
| 
 | ||||
| parser <- arg_parser("Simulate data and fit corrected models.") | ||||
| parser <- add_argument(parser, "--infile", default="", help="name of the file to read.") | ||||
| parser <- add_argument(parser, "--name", default="", help="The name to safe the data to in the remember file.") | ||||
| args <- parse_args(parser) | ||||
| source("summarize_estimator.R") | ||||
| 
 | ||||
| build_plot_dataset <- function(df){ | ||||
|      | ||||
|     x.true <-  summarize.estimator(df, 'true','x') | ||||
| 
 | ||||
|     z.true <-  summarize.estimator(df, 'true','z') | ||||
| 
 | ||||
|     x.loa0.feasible <- summarize.estimator(df, 'loa0.feasible','x') | ||||
|      | ||||
|     z.loa0.feasible <- summarize.estimator(df,'loa0.feasible','z') | ||||
| 
 | ||||
|     x.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'x') | ||||
| 
 | ||||
|     z.loa0.mle <- summarize.estimator(df, 'loa0.mle', 'z') | ||||
| 
 | ||||
|     x.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'x') | ||||
| 
 | ||||
|     z.loco.feasible <- summarize.estimator(df, 'loco.feasible', 'z') | ||||
| 
 | ||||
|     x.loco.mle <- summarize.estimator(df, 'loco.mle', 'x') | ||||
| 
 | ||||
|     z.loco.mle <- summarize.estimator(df, 'loco.mle', 'z') | ||||
| 
 | ||||
|     ## x.mle <- summarize.estimator(df, 'mle', 'x') | ||||
| 
 | ||||
|     ## z.mle <- summarize.estimator(df, 'mle', 'z') | ||||
| 
 | ||||
|     accuracy <- df[,mean(accuracy)] | ||||
|     plot.df <- rbindlist(list(x.true,z.true,x.loa0.feasible,z.loa0.feasible,x.loa0.mle,z.loa0.mle,x.loco.feasible, z.loco.feasible, x.loco.mle, z.loco.mle),use.names=T) | ||||
|     plot.df[,accuracy := accuracy] | ||||
|     plot.df <- plot.df[,":="(sd.est=sqrt(var.est)/N.sims)] | ||||
|     return(plot.df) | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| plot.df <- read_feather(args$infile) | ||||
| print(unique(plot.df$N)) | ||||
| 
 | ||||
| # df <- df[apply(df,1,function(x) !any(is.na(x)))] | ||||
| 
 | ||||
| if(!('Bzx' %in% names(plot.df))) | ||||
|     plot.df[,Bzx:=NA] | ||||
| 
 | ||||
| if(!('accuracy_imbalance_difference' %in% names(plot.df))) | ||||
|     plot.df[,accuracy_imbalance_difference:=NA] | ||||
| 
 | ||||
| unique(plot.df[,'accuracy_imbalance_difference']) | ||||
| 
 | ||||
| #plot.df <- build_plot_dataset(df[accuracy_imbalance_difference==0.1][N==700]) | ||||
| plot.df <- build_plot_dataset(plot.df) | ||||
| change.remember.file("remember_irr.RDS",clear=TRUE) | ||||
| remember(plot.df,args$name) | ||||
| 
 | ||||
| #ggplot(df,aes(x=Bxy.est.mle)) + geom_histogram() + facet_grid(accuracy_imbalance_difference ~ Bzy) | ||||
| 
 | ||||
| ## ## ## df[gmm.ER_pval<0.05] | ||||
| 
 | ||||
| ## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T), | ||||
| ##                                    N=factor(N), | ||||
| ##                                    m=factor(m))] | ||||
| 
 | ||||
| ## plot.df.test <- plot.df.test[(variable=='x') & (method!="Multiple imputation (Classifier features unobserved)")] | ||||
| ## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) | ||||
| ## p <- p + geom_hline(data=plot.df.test, mapping=aes(yintercept=0.1),linetype=2) | ||||
| 
 | ||||
| ## p <- p + geom_pointrange() + facet_grid(N~m,as.table=F,scales='free') + scale_x_discrete(labels=label_wrap_gen(4)) | ||||
| ## print(p) | ||||
| 
 | ||||
| ## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T), | ||||
| ##                                    N=factor(N), | ||||
| ##                                    m=factor(m))] | ||||
| 
 | ||||
| ## plot.df.test <- plot.df.test[(variable=='z') & (method!="Multiple imputation (Classifier features unobserved)")] | ||||
| ## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) | ||||
| ## p <- p + geom_hline(data=plot.df.test, mapping=aes(yintercept=-0.1),linetype=2) | ||||
| 
 | ||||
| ## p <- p + geom_pointrange() + facet_grid(m~N,as.table=F,scales='free') + scale_x_discrete(labels=label_wrap_gen(4)) | ||||
| ## print(p) | ||||
| 
 | ||||
| 
 | ||||
| ## x.mle <- df[,.(N,m,Bxy.est.mle,Bxy.ci.lower.mle, Bxy.ci.upper.mle, y_explained_variance, Bzx, Bzy, accuracy_imbalance_difference)] | ||||
| ## x.mle.plot <- x.mle[,.(mean.est = mean(Bxy.est.mle), | ||||
| ##                        var.est = var(Bxy.est.mle), | ||||
| ##                        N.sims = .N, | ||||
| ##                        variable='z', | ||||
| ##                        method='Bespoke MLE' | ||||
| ##                        ), | ||||
| ##                     by=c("N","m",'y_explained_variance', 'Bzx', 'Bzy','accuracy_imbalance_difference')] | ||||
| 
 | ||||
| ## z.mle <- df[,.(N,m,Bzy.est.mle,Bzy.ci.lower.mle, Bzy.ci.upper.mle, y_explained_variance, Bzx, Bzy, accuracy_imbalance_difference)] | ||||
| 
 | ||||
| ## z.mle.plot <- z.mle[,.(mean.est = mean(Bzy.est.mle), | ||||
| ##                        var.est = var(Bzy.est.mle), | ||||
| ##                        N.sims = .N, | ||||
| ##                        variable='z', | ||||
| ##                        method='Bespoke MLE' | ||||
| ##                        ), | ||||
| ##                     by=c("N","m",'y_explained_variance','Bzx')] | ||||
| 
 | ||||
| ## plot.df <- z.mle.plot | ||||
| ## plot.df.test <- plot.df[,':='(method=factor(method,levels=c("Naive","Multiple imputation", "Multiple imputation (Classifier features unobserved)","Regression Calibration","2SLS+gmm","Bespoke MLE", "Feasible"),ordered=T), | ||||
| ##                                    N=factor(N), | ||||
| ##                                    m=factor(m))] | ||||
| 
 | ||||
| ## plot.df.test <- plot.df.test[(variable=='z') & (m != 1000) & (m!=500) & (method!="Multiple imputation (Classifier features unobserved)")] | ||||
| ## p <- ggplot(plot.df.test, aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) | ||||
| ## p <- p + geom_hline(aes(yintercept=0.2),linetype=2) | ||||
| 
 | ||||
| ## p <- p + geom_pointrange() + facet_grid(m~Bzx, Bzy,as.table=F) + scale_x_discrete(labels=label_wrap_gen(4)) | ||||
| ## print(p) | ||||
| 
 | ||||
| 
 | ||||
| ## ## ggplot(plot.df[variable=='x'], aes(y=mean.est, ymax=mean.est + var.est/2, ymin=mean.est-var.est/2, x=method)) + geom_pointrange() + facet_grid(-m~N) + scale_x_discrete(labels=label_wrap_gen(10)) | ||||
| 
 | ||||
| ## ## ggplot(plot.df,aes(y=N,x=m,color=p.sign.correct)) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")  | ||||
| 
 | ||||
| ## ## ggplot(plot.df,aes(y=N,x=m,color=abs(mean.bias))) + geom_point() + facet_grid(variable ~ method) + scale_color_viridis_c(option='D') + theme_minimal() + xlab("Number of gold standard labels") + ylab("Total sample size")  | ||||
							
								
								
									
										42
									
								
								simulations/summarize_estimator.R
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										42
									
								
								simulations/summarize_estimator.R
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,42 @@ | ||||
| 
 | ||||
| summarize.estimator <- function(df, suffix='naive', coefname='x'){ | ||||
| 
 | ||||
|     part <- df[,c('N', | ||||
|                   'm', | ||||
|                   'Bxy', | ||||
|                   paste0('B',coefname,'y.est.',suffix), | ||||
|                   paste0('B',coefname,'y.ci.lower.',suffix), | ||||
|                   paste0('B',coefname,'y.ci.upper.',suffix), | ||||
|                   'y_explained_variance', | ||||
|                   'Bzx', | ||||
|                   'Bzy', | ||||
|                   'accuracy_imbalance_difference' | ||||
|                   ), | ||||
|                with=FALSE] | ||||
|      | ||||
|     true.in.ci <- as.integer((part$Bxy >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (part$Bxy <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]])) | ||||
|     zero.in.ci <- as.integer(0 >= part[[paste0('B',coefname,'y.ci.lower.',suffix)]]) & (0 <= part[[paste0('B',coefname,'y.ci.upper.',suffix)]]) | ||||
|     bias <- part$Bxy - part[[paste0('B',coefname,'y.est.',suffix)]] | ||||
|     sign.correct <- as.integer(sign(part$Bxy) == sign(part[[paste0('B',coefname,'y.est.',suffix)]])) | ||||
| 
 | ||||
|     part <- part[,':='(true.in.ci = true.in.ci, | ||||
|                        zero.in.ci = zero.in.ci, | ||||
|                        bias=bias, | ||||
|                        sign.correct =sign.correct)] | ||||
| 
 | ||||
|     part.plot <- part[, .(p.true.in.ci = mean(true.in.ci), | ||||
|                           mean.bias = mean(bias), | ||||
|                           mean.est = mean(.SD[[paste0('B',coefname,'y.est.',suffix)]]), | ||||
|                           var.est = var(.SD[[paste0('B',coefname,'y.est.',suffix)]]), | ||||
|                           est.upper.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.95,na.rm=T), | ||||
|                           est.lower.95 = quantile(.SD[[paste0('B',coefname,'y.est.',suffix)]],0.05,na.rm=T), | ||||
|                           N.sims = .N, | ||||
|                           p.sign.correct = mean(as.integer(sign.correct & (! zero.in.ci))), | ||||
|                           variable=coefname, | ||||
|                           method=suffix | ||||
|                           ), | ||||
|                       by=c("N","m",'y_explained_variance','Bzx', 'Bzy', 'accuracy_imbalance_difference') | ||||
|                       ] | ||||
|      | ||||
|     return(part.plot) | ||||
| } | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user